Expectation Maximization (EM)

Karl Stratos

June 27, 2018

• Observed instances $x \in \mathcal{X}$ (your data)

- Observed instances $x \in \mathcal{X}$ (your data)
- Latent variables $z \in \mathcal{Z}$

- Observed instances $x \in \mathcal{X}$ (your data)
- Latent variables $z \in \mathcal{Z}$
- Probabilistic generative model: Φ defining

$$P_{\Phi}(x, \boldsymbol{z}) = P_{\Phi}(\boldsymbol{z}) P_{\Phi}(x|\boldsymbol{z})$$

- Observed instances $x \in \mathcal{X}$ (your data)
- Latent variables $z \in \mathcal{Z}$
- Probabilistic generative model: Φ defining

$$P_{\Phi}(x, \boldsymbol{z}) = P_{\Phi}(\boldsymbol{z}) P_{\Phi}(x|\boldsymbol{z})$$

Idea: we believe that x has been generated from some unobserved variables z, so we should model (x, z) jointly rather than just x (even though we don't see z in data).

Fitting Data Better with Latent Variables

Data: two instances

$$x^{(1)} = (a, a)$$

 $x^{(2)} = (b, b)$

A generative model P_Θ(x) over x ∈ {a, b} without latent variables: for each i = 1, 2,

• Draw
$$x_1^{(i)} \sim P_{\Theta}(x)$$
.

• Draw
$$x_2^{(i)} \sim P_{\Theta}(x)$$
.

What's the highest probability that Θ can assign to this data?

Fitting Data Better with Latent Variables

Data: two instances

$$x^{(1)} = (a, a)$$

 $x^{(2)} = (b, b)$

A generative model P_Θ(x) over x ∈ {a, b} without latent variables: for each i = 1, 2,

• Draw
$$x_{1}^{(i)} \sim P_{\Theta}(x)$$
.

• Draw
$$x_2^{(i)} \sim P_{\Theta}(x)$$
.

What's the highest probability that Θ can assign to this data?

- ► A latent-variable model $P_{\Phi}(x, z) = P_{\Phi}(z)P_{\Phi}(x|z)$ over $x \in \{a, b\}$ and $z \in \{1, 2\}$: for each i = 1, 2,
 - Draw $z^{(i)} \sim P_{\Phi}(\boldsymbol{z})$
 - Draw $x_{1}^{(i)} \sim P_{\Theta}(x|z^{(i)}).$
 - Draw $x_2^{(i)} \sim P_{\Theta}(x|z^{(i)}).$

What's the highest probability that Φ can assign to this data?

What Are Latent-Variable Models Useful For?

- 1. **More expressive model**: which leads to improved performance
- Interpretability: discover latent structure z to understand data/problem better
- 3. **Controlled generation**: once we learn the model, we can control our generation through *z*

 $\frac{z}{x} \sim P_{\Phi}(\cdot)$ $x \sim P_{\Phi}(\cdot|z)$

Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory ELBO: Lower Bound on Log Likelihood The Expectation Maximization (EM) Algorithm Example: Naive Bayes

The Learning Problem

► How can we learn model Φ that defines P_Φ(x, z) when we only observe x?

The Learning Problem

- How can we learn model Φ that defines P_Φ(x, z) when we only observe x?
- Thought experiment: had we observed z as well in our data, we could've just done maximum-likelihood estimate (MLE):

$$\Phi^* = \underset{\Phi}{\operatorname{arg\,max}} \log P_{\Phi}(x, z)$$

The Learning Problem

- How can we learn model Φ that defines P_Φ(x, z) when we only observe x?
- Thought experiment: had we observed z as well in our data, we could've just done maximum-likelihood estimate (MLE):

$$\Phi^* = \underset{\Phi}{\arg\max} \quad \log P_{\Phi}(x, z)$$

If we don't observe z, we can still do MLE on what we do observe:

$$\Phi^* = \underset{\Phi}{\arg\max} \quad \log P_{\Phi}(x)$$

where

$$P_{\Phi}(x) = \sum_{\boldsymbol{z} \in \mathcal{Z}} P_{\Phi}(x, \boldsymbol{z})$$

Learning = Density Estimation

Wikipedia:

"density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function"

 From here on, we will focus on MLE: the problem of maximizing

$$\log \sum_{\boldsymbol{z} \in \mathcal{Z}} P_{\Phi}(\boldsymbol{x}, \boldsymbol{z})$$

over Φ when we only observe \boldsymbol{x}

Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory ELBO: Lower Bound on Log Likelihood The Expectation Maximization (EM) Algorithm Example: Naive Bayes

Given a distribution P over z,

• The "amount of surprise" upon seeing z is quantified by 1/P(z).

Given a distribution P over z,

- The "amount of surprise" upon seeing z is quantified by 1/P(z).
- The number of bits to encode the amount of surprise upon seeing z is $\log(1/P(z))$.

Given a distribution P over z,

- The "amount of surprise" upon seeing z is quantified by 1/P(z).
- ► The number of bits to encode the amount of surprise upon seeing z is log(1/P(z)).
- ► The **entropy** of *P* is the expected number of bits to encode the amount of surprise when *z* is drawn from *P* itself:

$$H(P) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{P(z)} \right] = -\sum_{z} P(z) \log P(z)$$

Given a distribution P over z,

- The "amount of surprise" upon seeing z is quantified by 1/P(z).
- ► The number of bits to encode the amount of surprise upon seeing z is log(1/P(z)).
- ► The **entropy** of *P* is the expected number of bits to encode the amount of surprise when *z* is drawn from *P* itself:

$$H(P) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{P(z)} \right] = -\sum_{z} P(z) \log P(z)$$

• Convention: if P(z) = 0 for some z, we ignore it in the sum.

Given a distribution P over z,

- The "amount of surprise" upon seeing z is quantified by 1/P(z).
- ► The number of bits to encode the amount of surprise upon seeing z is log(1/P(z)).
- ► The **entropy** of *P* is the expected number of bits to encode the amount of surprise when *z* is drawn from *P* itself:

$$H(P) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{P(z)} \right] = -\sum_{z} P(z) \log P(z)$$

- Convention: if P(z) = 0 for some z, we ignore it in the sum.
- Thus if P(z) = 1 is deterministic, then the entropy is 0.

Given a distribution P over z,

- The "amount of surprise" upon seeing z is quantified by 1/P(z).
- ► The number of bits to encode the amount of surprise upon seeing z is log(1/P(z)).
- ► The **entropy** of *P* is the expected number of bits to encode the amount of surprise when *z* is drawn from *P* itself:

$$H(P) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{P(z)} \right] = -\sum_{z} P(z) \log P(z)$$

- Convention: if P(z) = 0 for some z, we ignore it in the sum.
- Thus if P(z) = 1 is deterministic, then the entropy is 0.
- ► The entropy is always nonnegative and maximized when P is uniform over z.

Given a distribution P and Q over z,

The cross entropy between P and Q is the the expected number of bits to encode the amount of surprise of Q when z is drawn from P:

$$H(P,Q) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{Q(z)} \right] = -\sum_{z} P(z) \log Q(z)$$

Given a distribution P and Q over z,

The cross entropy between P and Q is the the expected number of bits to encode the amount of surprise of Q when z is drawn from P:

$$H(P,Q) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{Q(z)} \right] = -\sum_{z} P(z) \log Q(z)$$

► The cross entropy is always nonnegative and minimized when P = Q.

Given a distribution P and Q over z,

The cross entropy between P and Q is the the expected number of bits to encode the amount of surprise of Q when z is drawn from P:

$$H(P,Q) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{Q(z)} \right] = -\sum_{z} P(z) \log Q(z)$$

- ► The cross entropy is always nonnegative and minimized when P = Q.
- ▶ The **KL divergence** from Q to P is the *additional* number of bits to encode the amount of surprise of Q compared to the amount of surprise of P, when z is drawn from P:

$$D_{\mathsf{KL}}\left(P||Q\right) := H(P,Q) - H(P)$$

Given a distribution P and Q over z,

The cross entropy between P and Q is the the expected number of bits to encode the amount of surprise of Q when z is drawn from P:

$$H(P,Q) := \mathbf{E}_{z \sim P(\cdot)} \left[\log \frac{1}{Q(z)} \right] = -\sum_{z} P(z) \log Q(z)$$

- ► The cross entropy is always nonnegative and minimized when P = Q.
- ▶ The **KL divergence** from Q to P is the *additional* number of bits to encode the amount of surprise of Q compared to the amount of surprise of P, when z is drawn from P:

$$D_{\mathrm{KL}}\left(P||Q\right) := H(P,Q) - H(P)$$

• The KL divergence is zero iff P = Q.

Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory
ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

The Idea of Introducing an Auxiliary Posterior

- ► Maximizing log P_Φ(x) is hard, whereas maximizing log P_Φ(x, z) when z is observed is easier.
- We will introduce an auxiliary model Ψ that specifies (its own) posterior distribution P_Ψ(z|x) and use it to "help" Φ.

The Idea of Introducing an Auxiliary Posterior

- ► Maximizing log P_Φ(x) is hard, whereas maximizing log P_Φ(x, z) when z is observed is easier.
- We will introduce an auxiliary model Ψ that specifies (its own) posterior distribution P_Ψ(z|x) and use it to "help" Φ.
- Clarification: Φ is a model that defines a joint distribution

 $P_{\Phi}(x, \mathbf{z})$

which defines marginal $P_{\Phi}(x) = \sum_{z} P_{\Phi}(x, z)$ and posterior $P_{\Phi}(z|x) = P_{\Phi}(x, z)/P_{\Phi}(x)$ probabilities.

The Idea of Introducing an Auxiliary Posterior

- ► Maximizing log P_Φ(x) is hard, whereas maximizing log P_Φ(x, z) when z is observed is easier.
- We will introduce an auxiliary model Ψ that specifies (its own) posterior distribution P_Ψ(z|x) and use it to "help" Φ.
- **Clarification**: Φ is a model that defines a joint distribution

 $P_{\Phi}(x, \mathbf{z})$

which defines marginal $P_{\Phi}(x) = \sum_{z} P_{\Phi}(x, z)$ and posterior $P_{\Phi}(z|x) = P_{\Phi}(x, z)/P_{\Phi}(x)$ probabilities.

In constrast, $\boldsymbol{\Psi}$ is some other model that defines its own posterior

 $P_{\Psi}(\boldsymbol{z}|\boldsymbol{x})$

 Ψ does <u>not</u> have to define a joint distribution over x and z.

ELBO: Evidence Lower Bound

 $\mathsf{ELBO}(\Phi, \Psi) := \log P_{\Phi}(x) - \underbrace{D_{\kappa}(P_{\Psi}(z|x)) || P_{\Phi}(z|x))}_{\kappa}$ ≥ 0

ELBO: Evidence Lower Bound

$$\mathsf{ELBO}(\Phi, \Psi) := \log P_{\Phi}(x) - \underbrace{D_{\mathsf{KL}}\left(P_{\Psi}(z|x)||P_{\Phi}(z|x)\right)}_{\geq 0}$$

For any choice of $\Psi, \, {\rm ELBO}(\Phi,\Psi)$ is a lower bound on the log likelihood of observed data

$$\log P_{\Phi}(x) := \log \sum_{z} P_{\Phi}(x, z)$$

13/24

Claim 1: ELBO and Expected Likelihood

$$\begin{split} \mathsf{ELBO}(\Phi, \Psi) \\ &= \mathbf{E}_{z \sim P_{\Psi}(\cdot|x)} \left[\underbrace{\log P_{\Phi}(x, z)}_{\text{``fully observed''}} \right] + H(P_{\Psi}(z|x)) \end{split}$$

14/24

Claim 2: ELBO and Autoencoder

$$\begin{split} \mathsf{ELBO}(\Phi, \Psi) \\ &= \mathbf{E}_{z \sim P_{\Psi}(\cdot|x)} \left[\log P_{\Phi}(x|z) \right] - D_{\mathsf{kL}} \left(P_{\Psi}(z|x) || P_{\Phi}(z) \right) \end{split}$$

 Ψ "encodes" x into z, Φ "decodes" x from z.

Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory ELBO: Lower Bound on Log Likelihood The Expectation Maximization (EM) Algorithm Example: Naive Bayes

EM: Coordinate Ascent on ELBO

Input: data x, definition of $P_{\Phi}(x, z)$ and $P_{\Psi}(z|x)$, integer T **Output**: estimation of Φ that locally maximizes $\log P_{\Phi}(x)$ 1. Initialize $\Phi^{(0)}$ and $\Psi^{(0)}$. 2. For $t = 1 \dots T$. $\Psi^{(t)} \leftarrow \arg \max \ \mathsf{ELBO}(\Phi^{(t-1)}, \Psi)$ $\Phi^{(t)} \leftarrow \arg \max \ \mathsf{ELBO}(\Phi, \Psi^{(t)})$ Φ 3. Return $\Phi^{(T)}$.

EM: ELBO Definition Expanded

Input: data x, definition of $P_{\Phi}(x, z)$ and $P_{\Psi}(z|x)$, integer TOutput: estimation of Φ that locally maximizes $\log P_{\Phi}(x)$ 1. Initialize $\Phi^{(0)}$ and $\Psi^{(0)}$. 2. For $t = 1 \dots T$, $\Psi^{(t)} \in \{\Psi : P_{\Psi}(z|x) = P_{\Phi^{(t-1)}}(z|x)\}$ $\Phi^{(t)} \leftarrow \arg \max_{\Phi} \mathbf{E}_{z \sim P_{\Psi^{(t)}}(\cdot|x)} [\log P_{\Phi}(x, z)]$ 3. Return $\Phi^{(T)}$.

EM: Lazy Version

Input: data x, definition of $P_{\Phi}(x, z)$, integer TOutput: estimation of Φ that locally maximizes $\log P_{\Phi}(x)$ 1. Initialize $\Phi^{(0)}$. 2. For $t = 1 \dots T$, $\Phi^{(t+1)} \leftarrow \underset{\Phi}{\operatorname{arg\,max}} \mathbf{E}_{z \sim P_{\Phi}(t)}(\cdot|x) [\log P_{\Phi}(x, z)]$ 3. Return $\Phi^{(T)}$.

Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory ELBO: Lower Bound on Log Likelihood The Expectation Maximization (EM) Algorithm Example: Naive Bayes

Naive Bayes (NB) Review

A generative model for classification

Input. List of d discrete (here, binary) features $x \in \{0, 1\}^d$ Output. One of m discrete labels $y \in \{1 \dots m\}$

- ▶ m + 2dm parameters q(y) for each $y = 1 \dots m$ q(0|y, j) and q(1|y, j) for each $j = 1 \dots d$ and $y = 1 \dots m$
- Conditional independence assumption!

$$p(\boldsymbol{x}, y) = q(y) \prod_{j=1}^{d} q(x_j | y, j)$$

▶ Inference: given $oldsymbol{x} \in \{0,1\}^d$, calculate

$$y^* = \underset{y \in \{1...m\}}{\operatorname{arg\,max}} p(y|\boldsymbol{x}) = \underset{y \in \{1...m\}}{\operatorname{arg\,max}} p(\boldsymbol{x}, y)$$

Naive Bayes Review: Supervised Learning

• Lemma. Given any $c_1 \dots c_l \ge 0$ (not all zero),

$$q_1^* \dots q_l^* = rgmax_{q_1 \dots q_l \ge 0: \sum_{i=1}^l q_i = 1} \sum_{i=1}^l c_i \log q_i$$

are given by $q_i^* = c_i / \sum_{j=1}^l c_j$.

▶ Given labeled training data $(x^{(1)}, y^{(1)}) \dots (x^{(n)}, y^{(n)})$, log likelihood under NB is

$$\sum_{i=1}^{n} \log q(y^{(i)}) + \sum_{j=1}^{d} \log q(x_j^{(i)}|y,j)$$

=
$$\sum_{y=1}^{m} \operatorname{count}(y) \log q(y^{(i)})$$

+
$$\sum_{y=1}^{m} \sum_{j=1}^{m} \sum_{x \in \{0,1\}} \operatorname{count}(y,j,x) \log q(x|y,j)$$

Naive Bayes Review: Supervised Learning (Cont.)

Thus MLE solution is given by counts:

$$q(y) = \frac{\operatorname{count}(y)}{n} \qquad \forall y \in \{1 \dots m\}$$

and

$$q(x|y,j) = \frac{\operatorname{count}(y,j,x)}{\operatorname{count}(y,j,0) + \operatorname{count}(y,j,1)} \quad \forall y \in \{1 \dots m\}$$
$$j \in \{1 \dots d\}$$
$$x \in \{0,1\}$$

Naive Bayes: Unsupervised Learning

Now I remove the labels $y^{(1)} \dots y^{(n)}.$ Your data consists of n feature vectors

$$oldsymbol{x}^{(1)}\dotsoldsymbol{x}^{(n)}\in\{0,1\}^d$$

We can use EM to learn NB parameters q(y) and q(x|y, j) that optimize $\log p(x^{(1)} \dots x^{(n)})$. Apply the EM algorithm below:

Input: data
$$\boldsymbol{x}^{(1)} \dots \boldsymbol{x}^{(n)} \in \{0, 1\}^d$$
, integer T
1. Initialize NB parameters $\Phi^{(0)}$.
2. For $t = 1 \dots T$,
 $\Phi^{(t+1)} \leftarrow \arg \max_{\Phi} \sum_{i=1}^n \sum_{y=1}^m P_{\Phi^{(t)}}(y|\boldsymbol{x}^{(i)}) \times \log P_{\Phi}(\boldsymbol{x}^{(i)}, y)$
3. Return $\Phi^{(T)}$.