Expectation Maximization (EM)

Karl Stratos

June 27, 2018

1/24

The Latent Variable Paradigm

» Observed instances € X’ (your data)

2 /24

The Latent Variable Paradigm

» Observed instances € X’ (your data)

» Latent variables z € Z

2 /24

The Latent Variable Paradigm

» Observed instances € X’ (your data)
> Latent variables z € Z

» Probabilistic generative model: ® defining

Pg(z,z) = Pp(2)Po(x|2)

2 /24

The Latent Variable Paradigm

» Observed instances € X’ (your data)
> Latent variables z € Z

» Probabilistic generative model: ® defining

Py(2, 2) = Po(2)Pa(a]-)

> Idea: we believe that x has been generated from some
unobserved variables z, so we should model (z, z) jointly
rather than just x (even though we don't see z in data).

2 /24

Fitting Data Better with Latent Variables

» Data: two instances

21 = (a,a)

2 = (b,b)

» A generative model Pg(z) over x € {a,b} without latent
variables: for each i = 1,2,
» Draw xgi) ~ Po(z).
» Draw xéi) ~ Pg(z).

What's the highest probability that © can assign to this data?

3/24

Fitting Data Better with Latent Variables

» Data: two instances
21 = (a,a)

2 = (b,b)

variables: for each i ,2,
» Draw xgi) ~ Po(
» Draw xéi) ~ Po(x).
What's the highest probability that © can assign to this data?

» A generative model Pg(z) over x € {a,b} without latent
=1

» A latent-variable model Py (x, z) = Pgp(z)Ps(x|z) over
x € {a,b} and z € {1,2}: foreach i = 1,2,
> Draw 2() ~ Pg(z)
» Draw 23" ~ Pg(z]z®).
» Draw xéi) ~ Po(z]z®).
What's the highest probability that ® can assign to this data?

3/24

What Are Latent-Variable Models Useful For?

1. More expressive model: which leads to improved
performance

2. Interpretability: discover latent structure z to understand
data/problem better

3. Controlled generation: once we learn the model, we can
control our generation through z

2~ Po(")
z ~ Po(-[2)

4 /24

Overview

Learning Latent-Variable Models by Density Estimation
Quick Review of Information Theory

ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

5/24

The Learning Problem

» How can we learn model ® that defines Py (x, z) when we
only observe x7?

6/ 24

The Learning Problem

» How can we learn model ® that defines Py (x, z) when we
only observe x7?

» Thought experiment: had we observed z as well in our data,
we could’ve just done maximum-likelihood estimate (MLE):

®* = argmax log Py(x, 2)
®

6/ 24

The Learning Problem

» How can we learn model ® that defines Py (x, z) when we
only observe x7?

» Thought experiment: had we observed z as well in our data,
we could’ve just done maximum-likelihood estimate (MLE):

®* = argmax log Py(x, 2)
®

» |f we don't observe z, we can still do MLE on what we do
observe:

®* = argmax log Py (x)
o

where

Pp(x) = Z Py(x, 2)

z€Z
6 /24

Learning = Density Estimation

» Wikipedia:
“density estimation is the construction of an estimate,

based on observed data, of an unobservable underlying
probability density function”

» From here on, we will focus on MLE: the problem of
maximizing

log Z Po(x, 2)

€2

over ® when we only observe x

7 /24

Overview

Learning Latent-Variable Models by Density Estimation
Quick Review of Information Theory

ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

8 /24

Entropy
Given a distribution P over z,

» The “amount of surprise” upon seeing z is quantified by

1/P(z).

9/24

Entropy
Given a distribution P over z,
» The “amount of surprise” upon seeing z is quantified by
1/P(z).
» The number of bits to encode the amount of surprise upon
seeing z is log(1/P(z)).

9/24

Entropy
Given a distribution P over z

» The “amount of surprise” upon seeing z is quantified by
1/P(z).

» The number of bits to encode the amount of surprise upon
seeing z is log(1/P(z)).

> The entropy of P is the expected number of bits to encode
the amount of surprise when z is drawn from P itself:

H(P) :==E,.p(, [log)] ZP)log P(z

9/24

Entropy

Given a distribution P over z

>

The “amount of surprise” upon seeing z is quantified by
1/P(z).

The number of bits to encode the amount of surprise upon
seeing z is log(1/P(z)).

The entropy of P is the expected number of bits to encode
the amount of surprise when z is drawn from P itself:

H(P) :==E,.p(, [log)] ZP)log P(z

Convention: if P(z) = 0 for some z, we ignore it in the sum.

9 /24

Entropy

Given a distribution P over z

>

The “amount of surprise” upon seeing z is quantified by
1/P(z).

The number of bits to encode the amount of surprise upon
seeing z is log(1/P(z)).

The entropy of P is the expected number of bits to encode
the amount of surprise when z is drawn from P itself:

H(P) :==E,.p(, [log)] ZP)log P(z

Convention: if P(z) = 0 for some z, we ignore it in the sum.
Thus if P(z) =1 is deterministic, then the entropy is 0.

9 /24

Entropy

Given a distribution P over z

>

The “amount of surprise” upon seeing z is quantified by
1/P(z).

The number of bits to encode the amount of surprise upon
seeing z is log(1/P(z)).

The entropy of P is the expected number of bits to encode
the amount of surprise when z is drawn from P itself:

H(P) :==E,.p(, [log)] ZP)log P(z

Convention: if P(z) = 0 for some z, we ignore it in the sum.
Thus if P(z) =1 is deterministic, then the entropy is 0.

The entropy is always nonnegative and maximized when P is
uniform over z.

9/24

Cross Entropy and KL Divergence
Given a distribution P and Q) over z
> The cross entropy between P and (Q is the the expected
number of bits to encode the amount of surprise of () when z
is drawn from P:

H(P,Q) :==E.p(, [log } ZP) log Q(z

10 / 24

Cross Entropy and KL Divergence
Given a distribution P and (@) over z
> The cross entropy between P and (Q is the the expected
number of bits to encode the amount of surprise of () when z
is drawn from P:

H(P,Q) :==E.p(, [log } ZP) log Q(z

> The cross entropy is always nonnegative and minimized when

P=Q.

10 / 24

Cross Entropy and KL Divergence
Given a distribution P and (@) over z
> The cross entropy between P and (Q is the the expected
number of bits to encode the amount of surprise of () when z
is drawn from P:

H(P,Q) :==E.p(, [log } ZP) log Q(z

> The cross entropy is always nonnegative and minimized when

P=0Q.

» The KL divergence from @ to P is the additional number of
bits to encode the amount of surprise of () compared to the
amount of surprise of P, when z is drawn from P:

D (P||Q) == H(P,Q) — H(P)

10 / 24

Cross Entropy and KL Divergence
Given a distribution P and (@) over z
> The cross entropy between P and (Q is the the expected
number of bits to encode the amount of surprise of () when z
is drawn from P:

H(P,Q) :==E.p(, [log } ZP) log Q(z

> The cross entropy is always nonnegative and minimized when

P=0Q.

» The KL divergence from @ to P is the additional number of
bits to encode the amount of surprise of () compared to the
amount of surprise of P, when z is drawn from P:

D (P||Q) == H(P,Q) — H(P)

» The KL divergence is zero iff P = Q.
10/24

Overview

Learning Latent-Variable Models by Density Estimation
Quick Review of Information Theory

ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

11 /24

The ldea of Introducing an Auxiliary Posterior

» Maximizing log Py (x) is hard, whereas maximizing
log Py (x, z) when z is observed is easier.

» We will introduce an auxiliary model W that specifies (its
own) posterior distribution Py (z|z) and use it to “help” ®.

12 /24

The ldea of Introducing an Auxiliary Posterior

» Maximizing log Py (x) is hard, whereas maximizing
log Py (x, z) when z is observed is easier.

» We will introduce an auxiliary model W that specifies (its
own) posterior distribution Py (z|z) and use it to “help” ®.
» Clarification: ® is a model that defines a joint distribution
P<I> (fL‘, Z)

which defines marginal Py (z) =). Po(x,2) and posterior
Py (z|x) = Py(x,z)/Py(x) probabilities.

12 /24

The ldea of Introducing an Auxiliary Posterior

» Maximizing log Py (x) is hard, whereas maximizing
log Py (x, z) when z is observed is easier.

» We will introduce an auxiliary model W that specifies (its
own) posterior distribution Py (z|z) and use it to “help” ®.

» Clarification: ® is a model that defines a joint distribution
P<I> (SC, Z)
which defines marginal Py (z) =). Po(x,2) and posterior
Py (z|x) = Py(x,z)/Py(x) probabilities.

In constrast, ¥ is some other model that defines its own
posterior

Py (z]x)
W does not have to define a joint distribution over = and z.
12 /24

ELBO: Evidence Lower Bound

ELBO(®, ¥) := log Py(z) — Dy (Pu(z|2)[| Po(2]2))

>0

13/ 24

ELBO: Evidence Lower Bound

ELBO(®, ¥) := log Py(z) — Dy (Pu(z|2)[| Po(2]2))

>0

For any choice of ¥, ELBO(®, ¥) is a lower bound on the log
likelihood of observed data

log Py (x) := log Z Py (z, z)

13/ 24

Claim 1: ELBO and Expected Likelihood

ELBO(®, 1)

= E..p,(|2) log Pp(x,2) | + H(Py(z|x))

“fully observed"”

14 / 24

Claim 2: ELBO and Autoencoder

ELBO(®,)
— E..py (o) [log P (2]2)] — D (Pu(]2)]| Po(2))

¥ “encodes” x into z, ® “decodes” x from z.

15 / 24

Overview

Learning Latent-Variable Models by Density Estimation
Quick Review of Information Theory

ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

16 / 24

EM: Coordinate Ascent on ELBO

Input: data x, definition of Pg(x,2) and Py(z|z), integer T
Output: estimation of ® that locally maximizes log Py ()

1. Initialize ®© and ¥,
2. Fort=1...T,

¥® « argmax ELBO(®!~Y W)
v

&) « argmax ELBO(®,)
P

3. Return &),

17 / 24

EM: ELBO Definition Expanded

Input: data x, definition of Py (x,z) and Py (z|z), integer T
Output: estimation of ® that locally maximizes log Py ()

1. Initialize ®© and ¥,
2. Fort=1...T,
U e {W: Py(zlr) = Pyu-(z|z)}

d® + argmax E._p (|o) [log Po(z, 2)]
P w(t)

3. Return &),

18 / 24

EM: Lazy Version

Input: data x, definition of Py (x, 2), integer T
Output: estimation of ® that locally maximizes log Py ()

1. Initialize ®(©).
2 Fort=1...T,

(I)(t+1) V. arg;)nax Eszq)(t)(-kc) [log Pq>(l’,z)]

3. Return &),

19 / 24

Overview

Learning Latent-Variable Models by Density Estimation
Quick Review of Information Theory

ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

20 /24

Naive Bayes (NB) Review

> A generative model for classification

Input. List of d discrete (here, binary) features € {0,1}*
Output. One of m discrete labels y € {1...m}

> m + 2dm parameters
q(y) foreachy=1...m
q(0ly,7) and ¢(1]y,j) foreach j=1...dandy=1...m

» Conditional independence assumption!
d
p(a,y) = q(y) [] a(xslv. 5)
j=1

> Inference: given « € {0,1}%, calculate

y" = argmax p(y|z) = arg max p(x, y)
ye{l..m} ye{l..m}

21/24

Naive Bayes Review: Supervised Learning

» Lemma. Given any ¢ ...¢; > 0 (not all zero),

* *
qi--.q; = arg max E c; log g;
Q@ >0: Y0, ai=1 =1

are given by ¢f = ¢;/ Zé‘:l Cj-

» Given labeled training data (w(l),y(l)) e (:B("),y(")), log
likelihood under NB is

n
> logq(y" Zlogq 1y, 4)
=1

= count(y) log ¢(y"")
y=1

+ZZ Z count(y, j,z) log ¢(x|y, j)

=1 j=12¢c{0,1} > / y

Naive Bayes Review: Supervised Learning (Cont.)

» Thus MLE solution is given by counts:

_ count(y)

Q(y)—T Vye{l...m}

and
' count(y, j, x)
_ Vye{l...
4(xly, j) count(y, j,0) + count(y, j,1) “lbem
je{l...d}
x € {0,1}

23 /24

Naive Bayes: Unsupervised Learning

Now | remove the labels y(!) ... 4™ Your data consists of n
feature vectors

2V 2™ e {0,1}

We can use EM to learn NB parameters ¢(y) and ¢(z|y, j) that
optimize log p(z™ ... 2(™). Apply the EM algorithm below:

Input: data (V... 2™ € {0,1}%, integer T
1. Initialize NB parameters ®(©).
2. Fort=1...T,

U+ argmax ZZPq)(t)(yh:(i)) x log Py (2)

@ i=1 y=1

3. Return &),

24 /24

