# Expectation Maximization (EM) 

Karl Stratos

June 27, 2018

## The Latent Variable Paradigm

- Observed instances $x \in \mathcal{X}$ (your data)


## The Latent Variable Paradigm

- Observed instances $x \in \mathcal{X}$ (your data)
- Latent variables $z \in \mathcal{Z}$


## The Latent Variable Paradigm

- Observed instances $x \in \mathcal{X}$ (your data)
- Latent variables $z \in \mathcal{Z}$
- Probabilistic generative model: $\Phi$ defining

$$
P_{\Phi}(x, z)=P_{\Phi}(z) P_{\Phi}(x \mid z)
$$

## The Latent Variable Paradigm

- Observed instances $x \in \mathcal{X}$ (your data)
- Latent variables $z \in \mathcal{Z}$
- Probabilistic generative model: $\Phi$ defining

$$
P_{\Phi}(x, z)=P_{\Phi}(z) P_{\Phi}(x \mid z)
$$

- Idea: we believe that $x$ has been generated from some unobserved variables $z$, so we should model $(x, z)$ jointly rather than just $x$ (even though we don't see $z$ in data).


## Fitting Data Better with Latent Variables

- Data: two instances

$$
\begin{aligned}
& x^{(1)}=(a, a) \\
& x^{(2)}=(b, b)
\end{aligned}
$$

- A generative model $P_{\Theta}(x)$ over $x \in\{a, b\}$ without latent variables: for each $i=1,2$,
- Draw $x_{1}^{(i)} \sim P_{\Theta}(x)$.
- Draw $x_{2}^{(i)} \sim P_{\Theta}(x)$.

What's the highest probability that $\Theta$ can assign to this data?

## Fitting Data Better with Latent Variables

- Data: two instances

$$
\begin{aligned}
& x^{(1)}=(a, a) \\
& x^{(2)}=(b, b)
\end{aligned}
$$

- A generative model $P_{\Theta}(x)$ over $x \in\{a, b\}$ without latent variables: for each $i=1,2$,
- Draw $x_{1}^{(i)} \sim P_{\Theta}(x)$.
- Draw $x_{2}^{(i)} \sim P_{\Theta}(x)$.

What's the highest probability that $\Theta$ can assign to this data?

- A latent-variable model $P_{\Phi}(x, z)=P_{\Phi}(z) P_{\Phi}(x \mid z)$ over $x \in\{a, b\}$ and $z \in\{1,2\}$ : for each $i=1,2$,
- Draw $z^{(i)} \sim P_{\Phi}(z)$
- Draw $x_{1}^{(i)} \sim P_{\Theta}\left(x \mid z^{(i)}\right)$.
- Draw $x_{2}^{(i)} \sim P_{\Theta}\left(x \mid z^{(i)}\right)$.

What's the highest probability that $\Phi$ can assign to this data?

## What Are Latent-Variable Models Useful For?

1. More expressive model: which leads to improved performance
2. Interpretability: discover latent structure $z$ to understand data/problem better
3. Controlled generation: once we learn the model, we can control our generation through $z$

$$
\begin{aligned}
& z \sim P_{\Phi}(\cdot) \\
& x \sim P_{\Phi}(\cdot \mid z)
\end{aligned}
$$

## Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory
ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

## The Learning Problem

- How can we learn model $\Phi$ that defines $P_{\Phi}(x, z)$ when we only observe $x$ ?


## The Learning Problem

- How can we learn model $\Phi$ that defines $P_{\Phi}(x, z)$ when we only observe $x$ ?
- Thought experiment: had we observed $z$ as well in our data, we could've just done maximum-likelihood estimate (MLE):

$$
\Phi^{*}=\underset{\Phi}{\arg \max } \log P_{\Phi}(x, z)
$$

## The Learning Problem

- How can we learn model $\Phi$ that defines $P_{\Phi}(x, z)$ when we only observe $x$ ?
- Thought experiment: had we observed $z$ as well in our data, we could've just done maximum-likelihood estimate (MLE):

$$
\Phi^{*}=\underset{\Phi}{\arg \max } \log P_{\Phi}(x, z)
$$

- If we don't observe $z$, we can still do MLE on what we do observe:

$$
\Phi^{*}=\underset{\Phi}{\arg \max } \log P_{\Phi}(x)
$$

where

$$
P_{\Phi}(x)=\sum_{z \in \mathcal{Z}} P_{\Phi}(x, z)
$$

## Learning $=$ Density Estimation

- Wikipedia:
"density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function"
- From here on, we will focus on MLE: the problem of maximizing

$$
\log \sum_{z \in \mathcal{Z}} P_{\Phi}(x, z)
$$

over $\Phi$ when we only observe $x$

## Overview

> Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory
> ELBO: Lower Bound on Log Likelihood
> The Expectation Maximization (EM) Algorithm
> Example: Naive Bayes

## Entropy

Given a distribution $P$ over $z$,

- The "amount of surprise" upon seeing $z$ is quantified by $1 / P(z)$.


## Entropy

Given a distribution $P$ over $z$,

- The "amount of surprise" upon seeing $z$ is quantified by $1 / P(z)$.
- The number of bits to encode the amount of surprise upon seeing $z$ is $\log (1 / P(z))$.


## Entropy

Given a distribution $P$ over $z$,

- The "amount of surprise" upon seeing $z$ is quantified by $1 / P(z)$.
- The number of bits to encode the amount of surprise upon seeing $z$ is $\log (1 / P(z))$.
- The entropy of $P$ is the expected number of bits to encode the amount of surprise when $z$ is drawn from $P$ itself:

$$
H(P):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{P(z)}\right]=-\sum_{z} P(z) \log P(z)
$$

## Entropy

Given a distribution $P$ over $z$,

- The "amount of surprise" upon seeing $z$ is quantified by $1 / P(z)$.
- The number of bits to encode the amount of surprise upon seeing $z$ is $\log (1 / P(z))$.
- The entropy of $P$ is the expected number of bits to encode the amount of surprise when $z$ is drawn from $P$ itself:

$$
H(P):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{P(z)}\right]=-\sum_{z} P(z) \log P(z)
$$

- Convention: if $P(z)=0$ for some $z$, we ignore it in the sum.


## Entropy

Given a distribution $P$ over $z$,

- The "amount of surprise" upon seeing $z$ is quantified by $1 / P(z)$.
- The number of bits to encode the amount of surprise upon seeing $z$ is $\log (1 / P(z))$.
- The entropy of $P$ is the expected number of bits to encode the amount of surprise when $z$ is drawn from $P$ itself:

$$
H(P):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{P(z)}\right]=-\sum_{z} P(z) \log P(z)
$$

- Convention: if $P(z)=0$ for some $z$, we ignore it in the sum.
- Thus if $P(z)=1$ is deterministic, then the entropy is 0 .


## Entropy

Given a distribution $P$ over $z$,

- The "amount of surprise" upon seeing $z$ is quantified by $1 / P(z)$.
- The number of bits to encode the amount of surprise upon seeing $z$ is $\log (1 / P(z))$.
- The entropy of $P$ is the expected number of bits to encode the amount of surprise when $z$ is drawn from $P$ itself:

$$
H(P):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{P(z)}\right]=-\sum_{z} P(z) \log P(z)
$$

- Convention: if $P(z)=0$ for some $z$, we ignore it in the sum.
- Thus if $P(z)=1$ is deterministic, then the entropy is 0 .
- The entropy is always nonnegative and maximized when $P$ is uniform over $z$.


## Cross Entropy and KL Divergence

Given a distribution $P$ and $Q$ over $z$,

- The cross entropy between $P$ and $Q$ is the the expected number of bits to encode the amount of surprise of $Q$ when $z$ is drawn from $P$ :

$$
H(P, Q):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{Q(z)}\right]=-\sum_{z} P(z) \log Q(z)
$$

## Cross Entropy and KL Divergence

Given a distribution $P$ and $Q$ over $z$,

- The cross entropy between $P$ and $Q$ is the the expected number of bits to encode the amount of surprise of $Q$ when $z$ is drawn from $P$ :

$$
H(P, Q):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{Q(z)}\right]=-\sum_{z} P(z) \log Q(z)
$$

- The cross entropy is always nonnegative and minimized when $P=Q$.


## Cross Entropy and KL Divergence

Given a distribution $P$ and $Q$ over $z$,

- The cross entropy between $P$ and $Q$ is the the expected number of bits to encode the amount of surprise of $Q$ when $z$ is drawn from $P$ :

$$
H(P, Q):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{Q(z)}\right]=-\sum_{z} P(z) \log Q(z)
$$

- The cross entropy is always nonnegative and minimized when $P=Q$.
- The KL divergence from $Q$ to $P$ is the additional number of bits to encode the amount of surprise of $Q$ compared to the amount of surprise of $P$, when $z$ is drawn from $P$ :

$$
D_{\text {КL }}(P \| Q):=H(P, Q)-H(P)
$$

## Cross Entropy and KL Divergence

Given a distribution $P$ and $Q$ over $z$,

- The cross entropy between $P$ and $Q$ is the the expected number of bits to encode the amount of surprise of $Q$ when $z$ is drawn from $P$ :

$$
H(P, Q):=\mathbf{E}_{z \sim P(\cdot)}\left[\log \frac{1}{Q(z)}\right]=-\sum_{z} P(z) \log Q(z)
$$

- The cross entropy is always nonnegative and minimized when $P=Q$.
- The KL divergence from $Q$ to $P$ is the additional number of bits to encode the amount of surprise of $Q$ compared to the amount of surprise of $P$, when $z$ is drawn from $P$ :

$$
D_{\text {КL }}(P \| Q):=H(P, Q)-H(P)
$$

- The KL divergence is zero iff $P=Q$.


## Overview

Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory
ELBO: Lower Bound on Log Likelihood
The Expectation Maximization (EM) Algorithm
Example: Naive Bayes

## The Idea of Introducing an Auxiliary Posterior

- Maximizing $\log P_{\Phi}(x)$ is hard, whereas maximizing $\log P_{\Phi}(x, z)$ when $z$ is observed is easier.
- We will introduce an auxiliary model $\Psi$ that specifies (its own) posterior distribution $P_{\Psi}(z \mid x)$ and use it to "help" $\Phi$.


## The Idea of Introducing an Auxiliary Posterior

- Maximizing $\log P_{\Phi}(x)$ is hard, whereas maximizing $\log P_{\Phi}(x, z)$ when $z$ is observed is easier.
- We will introduce an auxiliary model $\Psi$ that specifies (its own) posterior distribution $P_{\Psi}(z \mid x)$ and use it to "help" $\Phi$.
- Clarification: $\Phi$ is a model that defines a joint distribution

$$
P_{\Phi}(x, z)
$$

which defines marginal $P_{\Phi}(x)=\sum_{z} P_{\Phi}(x, z)$ and posterior $P_{\Phi}(z \mid x)=P_{\Phi}(x, z) / P_{\Phi}(x)$ probabilities.

## The Idea of Introducing an Auxiliary Posterior

- Maximizing $\log P_{\Phi}(x)$ is hard, whereas maximizing $\log P_{\Phi}(x, z)$ when $z$ is observed is easier.
- We will introduce an auxiliary model $\Psi$ that specifies (its own) posterior distribution $P_{\Psi}(z \mid x)$ and use it to "help" $\Phi$.
- Clarification: $\Phi$ is a model that defines a joint distribution

$$
P_{\Phi}(x, z)
$$

which defines marginal $P_{\Phi}(x)=\sum_{z} P_{\Phi}(x, z)$ and posterior $P_{\Phi}(z \mid x)=P_{\Phi}(x, z) / P_{\Phi}(x)$ probabilities.

In constrast, $\Psi$ is some other model that defines its own posterior

$$
P_{\Psi}(z \mid x)
$$

$\Psi$ does not have to define a joint distribution over $x$ and $z$.

## ELBO: Evidence Lower Bound

$\operatorname{ELBO}(\Phi, \Psi):=\log P_{\Phi}(x)-\underbrace{D_{\text {кц }}\left(P_{\Psi}(z \mid x)| | P_{\Phi}(z \mid x)\right)}_{\geq 0}$

## ELBO: Evidence Lower Bound

## $\operatorname{ELBO}(\Phi, \Psi):=\log P_{\Phi}(x)-\underbrace{D_{\text {кц }}\left(P_{\Psi}(z \mid x)| | P_{\Phi}(z \mid x)\right)}_{\geq 0}$

For any choice of $\Psi, \operatorname{ELBO}(\Phi, \Psi)$ is a lower bound on the log likelihood of observed data

$$
\log P_{\Phi}(x):=\log \sum_{z} P_{\Phi}(x, z)
$$

## Claim 1: ELBO and Expected Likelihood

$\operatorname{ELBO}(\Phi, \Psi)$

$$
=\mathbf{E}_{z \sim P_{\Psi}(\cdot \mid x)}[\underbrace{\log P_{\Phi}(x, z)}_{\text {"fully observed" }}]+H\left(P_{\Psi}(z \mid x)\right)
$$

## Claim 2: ELBO and Autoencoder

## $\operatorname{ELBO}(\Phi, \Psi)$

$$
=\mathbf{E}_{z \sim P_{\Psi}(\cdot \mid x)}\left[\log P_{\Phi}(x \mid z)\right]-D_{\text {КL }}\left(P_{\Psi}(z \mid x)| | P_{\Phi}(z)\right)
$$

$\Psi$ "encodes" $x$ into $z, \Phi$ "decodes" $x$ from $z$.

## Overview

# Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory <br> ELBO: Lower Bound on Log Likelihood <br> The Expectation Maximization (EM) Algorithm <br> Example: Naive Bayes 

## EM: Coordinate Ascent on ELBO

Input: data $x$, definition of $P_{\Phi}(x, z)$ and $P_{\Psi}(z \mid x)$, integer $T$
Output: estimation of $\Phi$ that locally maximizes $\log P_{\Phi}(x)$

1. Initialize $\Phi^{(0)}$ and $\Psi^{(0)}$.
2. For $t=1 \ldots T$,

$$
\begin{array}{ll}
\Psi^{(t)} \leftarrow \underset{\Psi}{\arg \max } & \operatorname{ELBO}\left(\Phi^{(t-1)}, \Psi\right) \\
\Phi^{(t)} \leftarrow \underset{\Phi}{\arg \max } & \operatorname{ELBO}\left(\Phi, \Psi^{(t)}\right)
\end{array}
$$

3. Return $\Phi^{(T)}$.

## EM: ELBO Definition Expanded

Input: data $x$, definition of $P_{\Phi}(x, z)$ and $P_{\Psi}(z \mid x)$, integer $T$ Output: estimation of $\Phi$ that locally maximizes $\log P_{\Phi}(x)$

1. Initialize $\Phi^{(0)}$ and $\Psi^{(0)}$.
2. For $t=1 \ldots T$,

$$
\begin{aligned}
& \Psi^{(t)} \in\left\{\Psi: P_{\Psi}(z \mid x)=P_{\Phi^{(t-1)}}(z \mid x)\right\} \\
& \Phi^{(t)} \leftarrow \underset{\Phi}{\arg \max } \quad \mathbf{E}_{z \sim P_{\Psi^{(t)}}(\cdot \mid x)}\left[\log P_{\Phi}(x, z)\right]
\end{aligned}
$$

3. Return $\Phi^{(T)}$.

## EM: Lazy Version

Input: data $x$, definition of $P_{\Phi}(x, z)$, integer $T$
Output: estimation of $\Phi$ that locally maximizes $\log P_{\Phi}(x)$

1. Initialize $\Phi^{(0)}$.
2. For $t=1 \ldots T$,

$$
\Phi^{(t+1)} \leftarrow \underset{\Phi}{\arg \max } \mathbf{E}_{z \sim P_{\Phi^{(t)}}(\cdot \mid x)}\left[\log P_{\Phi}(x, z)\right]
$$

3. Return $\Phi^{(T)}$.

## Overview

# Learning Latent-Variable Models by Density Estimation Quick Review of Information Theory <br> ELBO: Lower Bound on Log Likelihood <br> The Expectation Maximization (EM) Algorithm <br> Example: Naive Bayes 

## Naive Bayes (NB) Review

- A generative model for classification

Input. List of $d$ discrete (here, binary) features $\boldsymbol{x} \in\{0,1\}^{d}$ Output. One of $m$ discrete labels $y \in\{1 \ldots m\}$

- $m+2 d m$ parameters

$$
\begin{aligned}
& q(y) \text { for each } y=1 \ldots m \\
& q(0 \mid y, j) \text { and } q(1 \mid y, j) \text { for each } j=1 \ldots d \text { and } y=1 \ldots m
\end{aligned}
$$

- Conditional independence assumption!

$$
p(\boldsymbol{x}, y)=q(y) \prod_{j=1}^{d} q\left(x_{j} \mid y, j\right)
$$

- Inference: given $\boldsymbol{x} \in\{0,1\}^{d}$, calculate

$$
y^{*}=\underset{y \in\{1 \ldots m\}}{\arg \max } p(y \mid \boldsymbol{x})=\underset{y \in\{1 \ldots m\}}{\arg \max } p(\boldsymbol{x}, y)
$$

## Naive Bayes Review: Supervised Learning

- Lemma. Given any $c_{1} \ldots c_{l} \geq 0$ (not all zero),

$$
q_{1}^{*} \ldots q_{l}^{*}=\underset{q_{1} \ldots q_{l} \geq 0: \sum_{i=1}^{l}}{\arg \max } q_{i}=1 . \sum_{i=1}^{l} c_{i} \log q_{i}
$$

are given by $q_{i}^{*}=c_{i} / \sum_{j=1}^{l} c_{j}$.

- Given labeled training data $\left(\boldsymbol{x}^{(1)}, y^{(1)}\right) \ldots\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)$, log likelihood under NB is

$$
\begin{aligned}
& \sum_{i=1}^{n} \log q\left(y^{(i)}\right)+\sum_{j=1}^{d} \log q\left(x_{j}^{(i)} \mid y, j\right) \\
& =\sum_{y=1}^{m} \operatorname{count}(y) \log q\left(y^{(i)}\right) \\
& +\sum_{y=1}^{m} \sum_{j=1}^{m} \sum_{x \in\{0,1\}} \operatorname{count}(y, j, x) \log q(x \mid y, j)
\end{aligned}
$$

## Naive Bayes Review: Supervised Learning (Cont.)

- Thus MLE solution is given by counts:

$$
q(y)=\frac{\operatorname{count}(y)}{n} \quad \forall y \in\{1 \ldots m\}
$$

and

$$
\begin{array}{ll}
q(x \mid y, j)=\frac{\operatorname{count}(y, j, x)}{\operatorname{count}(y, j, 0)+\operatorname{count}(y, j, 1)} & \forall y \in\{1 \ldots m\} \\
& j \in\{1 \ldots d\} \\
& x \in\{0,1\}
\end{array}
$$

## Naive Bayes: Unsupervised Learning

Now I remove the labels $y^{(1)} \ldots y^{(n)}$. Your data consists of $n$ feature vectors

$$
\boldsymbol{x}^{(1)} \ldots \boldsymbol{x}^{(n)} \in\{0,1\}^{d}
$$

We can use EM to learn NB parameters $q(y)$ and $q(x \mid y, j)$ that optimize $\log p\left(\boldsymbol{x}^{(1)} \ldots \boldsymbol{x}^{(n)}\right)$. Apply the EM algorithm below:

Input: data $\boldsymbol{x}^{(1)} \ldots \boldsymbol{x}^{(n)} \in\{0,1\}^{d}$, integer $T$

1. Initialize NB parameters $\Phi^{(0)}$.
2. For $t=1 \ldots T$,

$$
\Phi^{(t+1)} \leftarrow \underset{\Phi}{\arg \max } \sum_{i=1}^{n} \sum_{y=1}^{m} P_{\Phi^{(t)}}\left(y \mid \boldsymbol{x}^{(i)}\right) \times \log P_{\Phi}\left(\boldsymbol{x}^{(i)}, y\right)
$$

3. Return $\Phi^{(T)}$.
