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The Latent Variable Paradigm

I Observed instances x ∈ X (your data)

I Latent variables z ∈ Z
I Probabilistic generative model: Φ defining

PΦ(x, z) = PΦ(z)PΦ(x|z)

I Idea: we believe that x has been generated from some
unobserved variables z, so we should model (x, z) jointly
rather than just x (even though we don’t see z in data).
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Fitting Data Better with Latent Variables
I Data: two instances

x(1) = (a, a)

x(2) = (b, b)

I A generative model PΘ(x) over x ∈ {a, b} without latent
variables: for each i = 1, 2,

I Draw x
(i)
1 ∼ PΘ(x).

I Draw x
(i)
2 ∼ PΘ(x).

What’s the highest probability that Θ can assign to this data?

I A latent-variable model PΦ(x, z) = PΦ(z)PΦ(x|z) over
x ∈ {a, b} and z ∈ {1, 2}: for each i = 1, 2,

I Draw z(i) ∼ PΦ(z)
I Draw x

(i)
1 ∼ PΘ(x|z(i)).

I Draw x
(i)
2 ∼ PΘ(x|z(i)).

What’s the highest probability that Φ can assign to this data?
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What Are Latent-Variable Models Useful For?

1. More expressive model: which leads to improved
performance

2. Interpretability: discover latent structure z to understand
data/problem better

3. Controlled generation: once we learn the model, we can
control our generation through z

z ∼ PΦ(·)
x ∼ PΦ(·|z)
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Overview

Learning Latent-Variable Models by Density Estimation
Quick Review of Information Theory

ELBO: Lower Bound on Log Likelihood

The Expectation Maximization (EM) Algorithm

Example: Naive Bayes
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The Learning Problem
I How can we learn model Φ that defines PΦ(x, z) when we

only observe x?

I Thought experiment: had we observed z as well in our data,
we could’ve just done maximum-likelihood estimate (MLE):

Φ∗ = arg max
Φ

logPΦ(x, z)

I If we don’t observe z, we can still do MLE on what we do
observe:

Φ∗ = arg max
Φ

logPΦ(x)

where

PΦ(x) =
∑
z∈Z

PΦ(x, z)
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Learning = Density Estimation

I Wikipedia:

“density estimation is the construction of an estimate,
based on observed data, of an unobservable underlying

probability density function”

I From here on, we will focus on MLE: the problem of
maximizing

log
∑
z∈Z

PΦ(x, z)

over Φ when we only observe x
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Entropy
Given a distribution P over z,

I The “amount of surprise” upon seeing z is quantified by
1/P (z).

I The number of bits to encode the amount of surprise upon
seeing z is log(1/P (z)).

I The entropy of P is the expected number of bits to encode
the amount of surprise when z is drawn from P itself:

H(P ) := Ez∼P (·)

[
log

1

P (z)

]
= −

∑
z

P (z) logP (z)

I Convention: if P (z) = 0 for some z, we ignore it in the sum.

I Thus if P (z) = 1 is deterministic, then the entropy is 0.

I The entropy is always nonnegative and maximized when P is
uniform over z.
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Cross Entropy and KL Divergence
Given a distribution P and Q over z,

I The cross entropy between P and Q is the the expected
number of bits to encode the amount of surprise of Q when z
is drawn from P :

H(P,Q) := Ez∼P (·)

[
log

1

Q(z)

]
= −

∑
z

P (z) logQ(z)

I The cross entropy is always nonnegative and minimized when
P = Q.

I The KL divergence from Q to P is the additional number of
bits to encode the amount of surprise of Q compared to the
amount of surprise of P , when z is drawn from P :

DKL (P ||Q) := H(P,Q)−H(P )

I The KL divergence is zero iff P = Q.
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The Idea of Introducing an Auxiliary Posterior
I Maximizing logPΦ(x) is hard, whereas maximizing

logPΦ(x, z) when z is observed is easier.

I We will introduce an auxiliary model Ψ that specifies (its
own) posterior distribution PΨ(z|x) and use it to “help” Φ.

I Clarification: Φ is a model that defines a joint distribution

PΦ(x, z)

which defines marginal PΦ(x) =
∑

z PΦ(x, z) and posterior
PΦ(z|x) = PΦ(x, z)/PΦ(x) probabilities.

In constrast, Ψ is some other model that defines its own
posterior

PΨ(z|x)

Ψ does not have to define a joint distribution over x and z.
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ELBO: Evidence Lower Bound

ELBO(Φ,Ψ) := logPΦ(x)−DKL (PΨ(z|x)||PΦ(z|x))︸ ︷︷ ︸
≥0

For any choice of Ψ, ELBO(Φ,Ψ) is a lower bound on the log
likelihood of observed data

logPΦ(x) := log
∑
z

PΦ(x, z)
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Claim 1: ELBO and Expected Likelihood

ELBO(Φ,Ψ)

= Ez∼PΨ(·|x)

 logPΦ(x, z)︸ ︷︷ ︸
“fully observed”

+ H(PΨ(z|x))
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Claim 2: ELBO and Autoencoder

ELBO(Φ,Ψ)

= Ez∼PΨ(·|x) [logPΦ(x|z)]−DKL (PΨ(z|x)||PΦ(z))

Ψ “encodes” x into z, Φ “decodes” x from z.
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EM: Coordinate Ascent on ELBO

Input: data x, definition of PΦ(x, z) and PΨ(z|x), integer T
Output: estimation of Φ that locally maximizes logPΦ(x)

1. Initialize Φ(0) and Ψ(0).

2. For t = 1 . . . T ,

Ψ(t) ← arg max
Ψ

ELBO(Φ(t−1),Ψ)

Φ(t) ← arg max
Φ

ELBO(Φ,Ψ(t))

3. Return Φ(T ).
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EM: ELBO Definition Expanded

Input: data x, definition of PΦ(x, z) and PΨ(z|x), integer T
Output: estimation of Φ that locally maximizes logPΦ(x)

1. Initialize Φ(0) and Ψ(0).

2. For t = 1 . . . T ,

Ψ(t) ∈ {Ψ : PΨ(z|x) = PΦ(t−1)(z|x)}
Φ(t) ← arg max

Φ
Ez∼P

Ψ(t) (·|x) [logPΦ(x, z)]

3. Return Φ(T ).
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EM: Lazy Version

Input: data x, definition of PΦ(x, z), integer T
Output: estimation of Φ that locally maximizes logPΦ(x)

1. Initialize Φ(0).

2. For t = 1 . . . T ,

Φ(t+1) ← arg max
Φ

Ez∼P
Φ(t) (·|x) [logPΦ(x, z)]

3. Return Φ(T ).
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Naive Bayes (NB) Review
I A generative model for classification

Input. List of d discrete (here, binary) features x ∈ {0, 1}d
Output. One of m discrete labels y ∈ {1 . . .m}

I m + 2dm parameters
q(y) for each y = 1 . . .m
q(0|y, j) and q(1|y, j) for each j = 1 . . . d and y = 1 . . .m

I Conditional independence assumption!

p(x, y) = q(y)
d∏

j=1

q(xj |y, j)

I Inference: given x ∈ {0, 1}d, calculate

y∗ = arg max
y∈{1...m}

p(y|x) = arg max
y∈{1...m}

p(x, y)
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Naive Bayes Review: Supervised Learning
I Lemma. Given any c1 . . . cl ≥ 0 (not all zero),

q∗1 . . . q
∗
l = arg max

q1...ql≥0:
∑l

i=1 qi=1

l∑
i=1

ci log qi

are given by q∗i = ci/
∑l

j=1 cj .

I Given labeled training data (x(1), y(1)) . . . (x(n), y(n)), log
likelihood under NB is

n∑
i=1

log q(y(i)) +

d∑
j=1

log q(x
(i)
j |y, j)

=
m∑
y=1

count(y) log q(y(i))

+

m∑
y=1

m∑
j=1

∑
x∈{0,1}

count(y, j, x) log q(x|y, j)
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Naive Bayes Review: Supervised Learning (Cont.)

I Thus MLE solution is given by counts:

q(y) =
count(y)

n
∀y ∈ {1 . . .m}

and

q(x|y, j) =
count(y, j, x)

count(y, j, 0) + count(y, j, 1)
∀y ∈ {1 . . .m}

j ∈ {1 . . . d}
x ∈ {0, 1}
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Naive Bayes: Unsupervised Learning
Now I remove the labels y(1) . . . y(n). Your data consists of n
feature vectors

x(1) . . .x(n) ∈ {0, 1}d

We can use EM to learn NB parameters q(y) and q(x|y, j) that
optimize log p(x(1) . . .x(n)). Apply the EM algorithm below:

Input: data x(1) . . .x(n) ∈ {0, 1}d, integer T

1. Initialize NB parameters Φ(0).

2. For t = 1 . . . T ,

Φ(t+1) ← arg max
Φ

n∑
i=1

m∑
y=1

PΦ(t)(y|x(i))× logPΦ(x(i), y)

3. Return Φ(T ).
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