Day 9: Unsupervised learning, dimensionality reduction

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

28 June 2018

Topics so far

- Linear regression
- Classification
 - Logistic regression
 - Maximum margin classifiers, kernel trick
 - Generative models
 - Neural networks
 - Ensemble methods
- Today and Tomorrow
 - Unsupervised learning dimensionality reduction, clustering
 - \circ Review

Unsupervised learning

- Unsupervised learning: Requires data $x \in \mathcal{X}$, but no labels
- Goal?: Compact representation of the data by detecting patterns

 $_{\circ}\,$ e.g. Group emails by topic

- Useful when we don't know what we are looking for
 makes evaluation tricky
- Applications in visualization, exploratory data analysis, semi-supervised learning

Clustering

Clustering languages

[Image from scienceinschool.org]

Clustering species (phylogeny)

Image clustering/segmentation

[Goldberger et al.]

Goal: Break up the image into meaningful or perceptually similar regions

[Slide from James Hayes]

Current trend is to use datasets with labels for such task e.g., MS COCO

Dimensionality reduction

- Input data $x \in \mathcal{X}$ may have thousands or millions of dimensions!
 - $_{\odot}\,$ e.g., text data represented as bag or words
 - e.g., video stream of images
 - e.g., fMRI data #voxels x #timesteps
- Dimensionality reduction: represent data with fewer dimensions
 - easier learning in subsequent tasks (preprocessing)
 - $_{\circ}$ visualization
 - $_{\odot}\,$ discover intrinsic patterns in the data

Manifolds

Slide from Yi Zhang

Embeddings

Low dimensional embedding

• Given high dimensional feature

 $\boldsymbol{x} = [x_1, x_2, \dots, x_d]$

find transformations

 $z(\mathbf{x}) = [z_1(\mathbf{x}), z_2(\mathbf{x}), \dots, z_k(\mathbf{x})]$

so that "almost all useful information" about x is retained in z(x)

- In general $k \ll d$, and z(x) is not invertible
- Transformation learned from a dataset of examples of x $S = \left\{ x^{(i)} \in \mathbb{R}^d : i = 1, 2, \dots, N \right\}$

 $_{\circ}$ Note: typically no labels y

Linear dimensionality reduction

• Given high dimensional feature $x = [x_1, x_2, ..., x_d]$

find transformations

$$\boldsymbol{z} = \boldsymbol{z}(\boldsymbol{x}) = [z_1(\boldsymbol{x}), z_2(\boldsymbol{x}), \dots, z_k(\boldsymbol{x})]$$

• Restrict z(x) to be a linear function of x

$$z_1 = w_1 \cdot x$$
$$z_2 = w_2 \cdot x$$
$$\vdots$$

 $Z_k = W_k \cdot X$

$$\begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_k \end{array} = \begin{array}{c} \leftarrow w^{(1)} \rightarrow \\ \leftarrow w^{(2)} \rightarrow \\ \vdots \\ \vdots \\ \leftarrow w^{(k)} \rightarrow \end{array}$$

only question is which **W**?

$$z = Wx$$

where
$$z \in \mathbb{R}^{k},$$

$$W \in \mathbb{R}^{k \times d},$$

$$x \in \mathbb{R}^{d}$$

 x_1

 x_2

 χ_3

 x_d

Linear dimensionality 2D example

- Given points $S = \{x^{(i)}: i = 1, 2, ..., N\}$ in 2D, we want a 1D representation
 - project $\{x^{(i)}\}$ onto a line w. x = 0

 $_{\circ}$ Find w to minimizes the sum of squared distances to the line

Vector projections

- $x \cdot u = ||x|| ||u|| \cos \theta$
- Assuming ||u|| = 1,
- $x. u = ||x|| \cos \theta = z_u \rightarrow \text{value of } x \text{ along } u_x$
- distance of \boldsymbol{x} to projection is $\|\boldsymbol{z}_u \, \boldsymbol{u} - \boldsymbol{x}\| = \|(\boldsymbol{x}, \boldsymbol{u})\boldsymbol{u} - \boldsymbol{x}\|$

U

 $\|\boldsymbol{x}\|\cos\theta$

 $= Z_{\mu}$

Principal component analysis

 For a 1D embedding along direction u, distance of x to the projection along u is given by

 $||z_u \boldsymbol{u} - \boldsymbol{x}|| = ||(\boldsymbol{x} \cdot \boldsymbol{u})\boldsymbol{u} - \boldsymbol{x}||$

- More generally for k dimensional embedding:
 - find orthonormal basis of the k dimensional subspace u₁, u₂, ..., u_k ∈ ℝ^d, i.e., u_i. u_j = 1 if i = j, and 0 otherwise
 let U ∈ ℝ^{k×d} be the matrix with u₁, u₂, ..., u_k along rows
 distance of projection of x to span{u₁, u₂, ..., u_k} ||U^TUx - x||

 $_{\circ}\,$ also from orthonormality of u_1 , u_2 , ..., u_k , check $UU^{ op} = I$

PCA objective

$$\min_{\boldsymbol{U}\in\mathbb{R}^{k\times d}}\sum_{i=1}^{N} \left\|\boldsymbol{U}^{\mathsf{T}}\boldsymbol{U}\boldsymbol{x}^{(i)}-\boldsymbol{x}^{(i)}\right\|^{2} s.t. \quad \boldsymbol{U}\boldsymbol{U}^{\mathsf{T}}=l$$

PCA

• PCA objective

$$\min_{\boldsymbol{U} \in \mathbb{R}^{k \times d}} \frac{1}{N} \sum_{i=1}^{N} \left\| \boldsymbol{U}^{\mathsf{T}} \boldsymbol{U} \boldsymbol{x}^{(i)} - \boldsymbol{x}^{(i)} \right\|^{2} s.t. \quad \boldsymbol{U} \boldsymbol{U}^{\mathsf{T}} = I$$

- Also, for all $UU^{\top} = I$ $||U^{\top}Ux - x||^2 = ||x||^2 + x^{\top}U^{\top}UU^{\top}Ux - 2x^{\top}U^{\top}Ux$ $= ||x||^2 - x^{\top}U^{\top}Ux = ||x||^2 - ||Ux||^2$
- Equivalent PCA objective

$$\max_{\boldsymbol{U}} \frac{1}{N} \sum_{i=1}^{N} \left\| \boldsymbol{U} \boldsymbol{x}^{(i)} \right\|^{2} = \sum_{j \in [k]} u_{j}^{\mathsf{T}} \widehat{\Sigma}_{xx} u_{j} \ s.t. \ \boldsymbol{U} \boldsymbol{U}^{\mathsf{T}} = I$$

where $\widehat{\Sigma}_{xx} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} x^{(i)^{\mathsf{T}}}$ (derivation in board)

• This is the same as finding top k eigenvectors of $\hat{\Sigma}_{xx}$

PCA algorithm

- Given $S = \{ x^{(i)} \in \mathbb{R}^d : i = 1, 2, ..., N \}$
- Let $X \in \mathbb{R}^{N \times d}$ be data matrix

• make sure X is re-centered so that column mean is 0

•
$$\widehat{\Sigma}_{xx} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)^{\top}} = \frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \in \mathbb{R}^{d \times d}$$

• $u_1, u_2, ..., u_k \in \mathbb{R}^d$ are top k eigenvectors of $\hat{\Sigma}_{xx}$

How to pick *k*?

- Data assumed to be low dimensional projection + noise
- Only keep projections onto components with large eigenvalues and ignore the rest

Eigenfaces

Input images: Principal components:

• Turk and Pentland '91

SVD version

- Given $S = \{ x^{(i)} \in \mathbb{R}^d : i = 1, 2, ..., N \}$
- Let $X \in \mathbb{R}^{N \times d}$ be data matrix
 - $_{\circ}\,$ make sure \pmb{X} is re-centered so that column mean is 0
- $X = \overline{V}\overline{S}\overline{U}^{\top}$ be the Singular Value Decomposition (SVD) of X, where
 - $\overline{V} \in \mathbb{R}^{N \times d}$ have orthonormal columns, i.e., $\overline{V}^{\top}\overline{V} = I$
 - columns of \overline{V} are called left singular vectors
 - $\overline{U} \in \mathbb{R}^{d \times d}$ also has orthonormal columns, i.e., $\overline{U}^{\top}\overline{U} = I$
 - columns of \overline{U} are called right singular vectors
 - $\circ \ \overline{\mathbf{S}} = diagonal(\sigma_1, \sigma_2, \dots, \sigma_d) \in \mathbb{R}^{d \times d}$
 - $\sigma_1, \sigma_2, \dots, \sigma_d$ are called the singular values
- First k columns of \overline{U} are the $u_1, u_2, ..., u_k$ we want.
- Representation of $x \in \mathbb{R}^d$ as $z(x) \in \mathbb{R}^k$ is given by $z(x)_j = \sigma_j u_j \cdot x$ for j = 1, 2, ..., k

Other linear dimensionality reduction

- PCA: given data $x \in \mathbb{R}^d$, find $U \in \mathbb{R}^{k \times d}$ to minimize $\min_{U} \|U^{\top}Ux - x\|_2^2 \ s.t. \ UU^{\top} = I$
- Canonical correlation analysis: given two "views" of data $x \in \mathbb{R}^d$ and $x' \in \mathbb{R}^{d'}$, find $U \in \mathbb{R}^{k \times d}$, $U' \in \mathbb{R}^{k \times d'}$ to minimize $\|Ux - U'x'\|_2^2 \ s.t. \ UU^\top = U'U'^\top = I$
- Sparse dictionary learning: learn a sparse representation of x as a linear combination of over-complete dictionary $x \rightarrow Dz$ where $D \in \mathbb{R}^{d \times m}, z \in \mathbb{R}^m$
 - $_{\circ}\,$ unlike PCA, here $m\gg d$ so z is higher dimensional, but learned to be sparse!
- Independent component analysis
- Factor analysis
- Linear discriminant analysis

Non linear dimensionality reduction

- Isomap
- Autoencoders
- Kernel PCA
- Local linear embedding
- Check out t-SNE for 2D visualization

Isomap

[Tenenbaum, Silva, Langford. Science 2000]

Isomap – algorithm

- Dataset of N points $S = \{x^{(i)} \in \mathbb{R}^d : i = 1, 2, ..., N\}$
- Represent the points as a kNN-graph with weights proportional to distance between the points
- The geodesic distance d(x, x') between points in the manifold is the length of shortest path in the graph
- Use any shortest path algorithm can be used to construct a matrix $M \in \mathbb{R}^{N \times N}$ of $d(x^{(i)}, x^{(j)})$ for all $x^{(i)}, x^{(j)} \in S$
- MDS: Find a (low dimensional) embedding z(x) of x so that distances are preserved

$$\min_{z} \sum_{i,j \in [N]} \left(\left\| z(x^{(i)}) - z(x^{(j)}) \right\| - M_{ij} \right)^2$$

ometimes
$$\min_{z} \sum_{i,j \in [N]} \frac{\left(\left\| z(x^{(i)}) - z(x^{(j)}) \right\| - M_{ij} \right)^2}{M_{ij}^2}$$

• **S**

Autoencoders

• Recall neural networks as feature learning

- $_{\circ}\,$ was learned for some supervised learning task
- $_{\circ}$ weights learned by minimizing $\ell(v_{out}, y)$
- but we don't have *y* anymore!

Autoencoders

• Recall neural networks as feature learning

- $_{\circ}\,$ was learned for some supervised learning task
- $_{\circ}$ weights learned by minimizing $\ell(v_{out}, y)$
- but we don't have *y* anymore!
- \circ instead use another "decoder" network to reconstruct x

Autoencoders

- $\phi(x) = f_{W_1}(x)$
- $\widetilde{x} = f_{W_2}(\phi(x))$
- some loss $\ell(\tilde{x}, x)$ $\widehat{W}_1, \widehat{W}_2 = \min_{W_1, W_2} \sum_{i=1}^N \ell\left(f_{W_2}\left(f_{W_1}(x^{(i)})\right), x^{(i)}\right)$
- learn using SGD with backpropagation