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Instructor:	Suriya	Gunasekar,	TTI	Chicago

28	June	2018

Day	9:	Unsupervised	
learning,	dimensionality	

reduction



Topics	so	far

• Linear	regression
• Classification

o Logistic	regression
o Maximum	margin	classifiers,	kernel	trick
o Generative	models
o Neural	networks	
o Ensemble	methods

• Today	and	Tomorrow
o Unsupervised	learning	– dimensionality	reduction,	clustering
o Review
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Unsupervised	learning
• Unsupervised	learning:	
Requires	data	𝑥 ∈ 𝒳,	but	no	
labels	
• Goal?:	Compact	
representation	of	the	data	by	
detecting	patterns
o e.g.	Group	emails	by	topic

• Useful	when	we	don’t	know	
what	we	are	looking	for	
o makes	evaluation	tricky

• Applications	in	visualization,	
exploratory	data	analysis,	
semi-supervised	learning
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Clustering
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Clustering	languages
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Clustering	species	(phylogeny)
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Image	clustering/segmentation
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Current	trend	is	
to	use	datasets	
with	labels	for	
such	task
e.g.,	MS	COCO



Dimensionality	reduction

• Input	data	𝑥 ∈ 𝒳 may	have	thousands	or	millions	of	
dimensions!
o e.g.,	text	data	represented	as	bag	or	words
o e.g.,	video	stream	of	images
o e.g.,	fMRI	data	#voxels	x	#timesteps

• Dimensionality	reduction:	represent	data	with	fewer	
dimensions
o easier	learning	in	subsequent	tasks	(preprocessing)
o visualization
o discover	intrinsic	patterns	in	the	data
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Manifolds
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Embeddings
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Low	dimensional	embedding

• Given	high	dimensional	feature	
𝒙 = 𝑥&, 𝑥(, … , 𝑥*

find	transformations	
𝑧 𝒙 = 𝑧& 𝒙 , 𝑧( 𝒙 , … , 𝑧, 𝒙

so	that	“almost	all	useful	information”	about	𝒙 is	
retained	in	𝑧(𝒙)
• In	general	𝑘 ≪ 𝑑, and	𝑧(𝒙) is	not	invertible
• Transformation	learned	from	a	dataset	of	examples	of	𝑥

𝑆 = 𝒙 𝒊 ∈ ℝ*: 𝑖 = 1,2, … , 𝑁
o Note:	typically	no	labels	𝑦
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Linear	dimensionality	reduction
• Given	high	dimensional	feature	

𝒙 = 𝑥&, 𝑥(, … , 𝑥*
find	transformations	

𝒛 = 𝑧 𝒙 = 𝑧& 𝒙 , 𝑧( 𝒙 ,… , 𝑧, 𝒙
• Restrict	z 𝒙 to	be	a	linear	function	of	𝒙

𝑧& = 𝒘𝟏. 𝒙
𝑧( = 𝒘𝟐. 𝒙

⋮
𝑧, = 𝒘𝒌. 𝒙
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𝑧&
𝑧(
⋮
𝑧,

← 𝒘 𝟏 →
← 𝒘 𝟐 →

⋮
← 𝒘 𝒌 →

𝑥&
𝑥(
𝑥E

⋮

𝑥*

=
𝒛 = 𝑾𝒙

where	
𝒛 ∈ ℝ,,	
𝑾 ∈ ℝ,×*,	
𝒙 ∈ ℝ*

only	question	
is	which	𝑾?



Linear	dimensionality	2D	example

• Given	points	𝑆 = {𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁} in	2D,	we	want	a	
1D	representation
o project	 𝒙 𝒊 onto	a	line	𝒘. 𝒙 = 0

o Find	𝒘 to	minimizes	the	sum	of	squared	distances	to	the	line
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Vector	projections

• 𝒙. 𝒖 = 𝒙 𝒖 	cos	𝜃
• Assuming	 𝒖 = 𝟏,	
• 𝒙. 𝒖 = 𝒙 cos	𝜃 = 𝑧R à value	of	𝑥 along	u

• distance	of	𝒙 to	projection	is	
𝑧R	𝒖 − 𝒙 = ‖ 𝒙. 𝒖 𝒖 − 𝒙‖
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𝒙 	cos𝜃
= 𝑧R		

𝜃
𝑢



Principal	component	analysis

• For	a	1D	embedding	along	direction	𝒖,	distance	of 𝒙 to	the	
projection	along	𝒖 is	given	by	

𝑧R	𝒖 − 𝒙 = ‖ 𝒙. 𝒖 𝒖 − 𝒙‖
• More	generally	for	𝑘 dimensional	embedding:

o find	orthonormal	basis	of	the	𝑘 dimensional	subspace		
𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 ∈ ℝ*,	i.e., 𝒖𝒊. 𝒖𝒋 = 1 if	𝑖 = 𝑗,	and	0	otherwise

o let	𝑼 ∈ ℝ,×* be	the	matrix	with	𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 along	rows
o distance	of	projection	of	𝒙 to	span{𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌}	

𝑼Y𝑼𝒙 − 𝒙
o also	from	orthonormality of	𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌,	check	𝑼𝑼Y = 𝑰

• PCA	objective

min
𝑼∈ℝ^×_

` 𝑼Y𝑼𝒙 𝒊 − 𝒙 𝒊 (
a

bc&

	𝑠. 𝑡. 		𝑼𝑼Y = 𝐼
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PCA
• PCA	objective

min
𝑼∈ℝ^×_

1
𝑁
` 𝑼Y𝑼𝒙 𝒊 − 𝒙 𝒊 (
a

bc&

	𝑠. 𝑡. 		𝑼𝑼Y = 𝐼

• Also,	for	all	𝑼𝑼Y = 𝐼
𝑼Y𝑼𝒙 − 𝒙 ( = 𝒙 ( + 𝑥Y𝑼Y𝑼𝑼Y𝑼𝒙 − 2𝒙Y𝑼Y𝑼𝒙

							= 𝒙 𝟐 − 𝒙Y𝑼Y𝑼𝒙 = 𝒙 𝟐 − 𝑼𝒙 𝟐

• Equivalent	PCA	objective

max
𝑼

1
𝑁
` 𝑼𝒙(𝒊) (
a

bc&

= ` 𝑢jYΣlmm𝑢j

�

j∈ ,

	𝑠. 𝑡. 		𝑼𝑼Y = 𝐼

where	Σlmm =
&
a
∑ 𝑥 b 𝑥 b Ya
bc& (derivation	in	board)

• This	is	the	same	as	finding	top	k	eigenvectors	of	Σlmm
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PCA	algorithm

• Given	𝑆 = 𝒙 𝒊 ∈ ℝ*: 𝑖 = 1,2, … , 𝑁

• Let	𝑿 ∈ ℝa×* be	data	matrix

o make	sure	𝑋 is	re-centered	so	that	column	mean	is	0

• Σlmm =
&
a
∑ 𝒙 𝒊 𝒙 𝒊 Ya
bc& = &

a
𝑿Y𝑿 ∈ ℝ*×*

• 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 ∈ ℝ* are	top	k	eigenvectors	of	Σlmm
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How	to	pick	𝑘?
• Data	assumed	to	be	low	dimensional	projection	+	noise
• Only	keep	projections	onto	components	with	large	
eigenvalues	and	ignore	the	rest

17Slide	credit:	Arti Singh



Eigenfaces

• Turk	and	Pentland ’91	
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SVD	version
• Given	𝑆 = 𝒙 𝒊 ∈ ℝ*: 𝑖 = 1,2, … , 𝑁
• Let	𝑿 ∈ ℝa×* be	data	matrix

o make	sure	𝑿 is	re-centered	so	that	column	mean	is	0
• 𝑿 = 𝑽s𝑺s𝑼sY be	the	Singular	Value	Decomposition	(SVD)	of	
𝑿,	where	
o 𝑽s ∈ ℝa×* have	orthonormal	columns, i.e.,	𝑽sY𝑽s = 𝑰

§ columns	of		𝑽s	are	called	left	singular	vectors
o 𝑼s ∈ ℝ*×* also	has	orthonormal	columns, i.e.,	𝑼sY𝑼s = 𝑰

§ columns	of		𝑼s	are	called	right	singular	vectors
o 𝑺s = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝜎&, 𝜎(, … , 𝜎* ∈ ℝ*×*

§ 𝜎&, 𝜎(, … , 𝜎* are	called	the	singular	values
• First	k	columns	of	𝑼s	are	the	𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 we	want.	

• Representation	of	𝒙 ∈ ℝ* as	𝑧 𝒙 ∈ ℝ,	 is	given	by	
𝑧(𝒙)j = 𝜎j	𝒖𝒋. 𝒙				for		𝑗 = 1,2, … , 𝑘
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Other	linear	dimensionality	reduction
• PCA: given	data	𝑥 ∈ ℝ*,	find	U ∈ ℝ,×* to	minimize	

min
�
	 𝑈Y𝑈𝑥 − 𝑥 (

(		𝑠. 𝑡. 		𝑈𝑈Y = 𝐼	

• Canonical	correlation	analysis:	given	two	“views”	of	data	𝑥 ∈ ℝ*
and	𝑥� ∈ ℝ*�,	find	U ∈ ℝ,×*, 𝑈� ∈ ℝ,×*� to	minimize	

	 𝑈𝑥 − 𝑈�𝑥� (
(		𝑠. 𝑡. 		𝑈𝑈Y = 𝑈�𝑈�Y = 𝐼

• Sparse	dictionary	learning:	learn	a	sparse	representation	
of	𝑥 as	a	linear	combination	of	over-complete	dictionary

𝑥 → 𝐷𝑧	where	D ∈ ℝ*×�, 𝑧 ∈ ℝ�
o unlike	PCA,	here	𝑚 ≫ 𝑑 so	𝑧 is	higher	dimensional,	
but	learned	to	be	sparse!

• Independent	component	analysis
• Factor	analysis
• Linear	discriminant	analysis
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Non	linear	dimensionality	reduction

• Isomap
• Autoencoders
• Kernel	PCA
• Local	linear	embedding
• Check	out	t-SNE	for	2D	visualization
• …
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Isomap
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Isomap – algorithm

• Dataset	of	𝑁 points	𝑆 = 𝒙 𝒊 ∈ ℝ*: 𝑖 = 1,2, … ,𝑁
• Represent	the	points	as	a	kNN-graph	with	weights	proportional	to	
distance	between	the	points
• The	geodesic	distance	𝑑 𝑥, 𝑥� between	points	in	the	manifold	is	
the	length	of	shortest	path	in	the	graph
• Use	any	shortest	path	algorithm	can	be	used	to	construct	a	matrix	
𝑀 ∈ ℝa×a of	𝑑 𝑥 b , 𝑥(j) for	all	𝑥 b , 𝑥(j) ∈ 𝑆
• MDS: Find	a	(low	dimensional)	embedding	𝑧(𝑥) of	𝑥 so	that	
distances	are	preserved

min
�

` 𝑧 𝑥 b − 𝑧 𝑥 j − 𝑀bj
(

�

b,j∈ a

o sometimes	min
�
∑ � m � �� m � ����

�

���
�

�
b,j∈ a
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Autoencoders

• Recall	neural	networks	as	feature	learning

o was	learned	for	some	supervised	learning	task	
o weights	learned	by	minimizing	ℓ(𝑣�R�, 𝑦)
o but	we	don’t	have	𝑦 anymore!
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Autoencoders

• Recall	neural	networks	as	feature	learning

o was	learned	for	some	supervised	learning	task	
o weights	learned	by	minimizing	ℓ(𝑣�R�, 𝑦)
o but	we	don’t	have	𝑦 anymore!
o instead	use	another	“decoder”	network	to	reconstruct	𝑥
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Autoencoders

• 𝜙 𝑥 = 𝑓𝑾𝟏 𝒙
• 𝒙£ = 𝑓𝑾𝟐 𝜙(𝒙)
• some	loss	ℓ 𝑥¤, 𝑥

𝑊¦&,𝑊¦( = min
§̈ ,§�

`ℓ 𝑓𝑾𝟐 𝑓𝑾𝟏 𝒙
b , 𝒙 b

a

bc&

• learn	using	SGD	with	backpropagation
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