Day 9: Unsupervised learning, dimensionality reduction

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

28 June 2018

Topics so far

- Linear regression
- Classification
- Logistic regression
- Maximum margin classifiers, kernel trick
- Generative models
- Neural networks
- Ensemble methods
- Today and Tomorrow
- Unsupervised learning - dimensionality reduction, clustering
- Review

Unsupervised learning

- Unsupervised learning: Requires data $x \in \mathcal{X}$, but no labels
- Goal?: Compact representation of the data by detecting patterns
- e.g. Group emails by topic
- Useful when we don't know what we are looking for
- makes evaluation tricky
- Applications in visualization, exploratory data analysis, semi-supervised learning

Clustering

Clustering languages

[Image from scienceinschool.org]

Clustering species (phylogeny)

Image clustering/segmentation

Goal: Break up the image into meaningful or perceptually similar regions

[Slide from James Hayes]
Current trend is to use datasets with labels for such task
e.g., MS COCO

Dimensionality reduction

- Input data $x \in \mathcal{X}$ may have thousands or millions of dimensions!
- e.g., text data represented as bag or words
- e.g., video stream of images
- e.g., fMRI data \#voxels x \#timesteps
- Dimensionality reduction: represent data with fewer dimensions
- easier learning in subsequent tasks (preprocessing)
- visualization
- discover intrinsic patterns in the data

Manifolds

Slide from Yi Zhang

Embeddings

Low dimensional embedding

- Given high dimensional feature

$$
\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]
$$

find transformations

$$
z(\boldsymbol{x})=\left[z_{1}(\boldsymbol{x}), z_{2}(\boldsymbol{x}), \ldots, z_{k}(\boldsymbol{x})\right]
$$

so that "almost all useful information" about \boldsymbol{x} is retained in $z(\boldsymbol{x})$

- In general $k \ll d$, and $z(\boldsymbol{x})$ is not invertible
- Transformation learned from a dataset of examples of x

$$
S=\left\{\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}: i=1,2, \ldots, N\right\}
$$

- Note: typically no labels y

Linear dimensionality reduction

- Given high dimensional feature

$$
\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]
$$

find transformations

$$
\mathbf{z}=z(\boldsymbol{x})=\left[z_{1}(\boldsymbol{x}), z_{2}(\boldsymbol{x}), \ldots, z_{k}(\boldsymbol{x})\right]
$$

- Restrict $\mathrm{z}(\boldsymbol{x})$ to be a linear function of \boldsymbol{x}

$$
\begin{aligned}
& z_{1}=w_{1} \cdot \boldsymbol{x} \\
& z_{2}=w_{2} \cdot \boldsymbol{x} \\
& \text { ! } \\
& z_{k}=\boldsymbol{w}_{\boldsymbol{k}} \cdot \boldsymbol{x} \\
& z=W x \\
& \text { where } \\
& \mathbf{z} \in \mathbb{R}^{k} \text {, } \\
& W \in \mathbb{R}^{k \times d} \text {, } \\
& x \in \mathbb{R}^{d}
\end{aligned}
$$

Linear dimensionality 2D example

- Given points $S=\left\{\boldsymbol{x}^{(\boldsymbol{i})}: i=1,2, \ldots, N\right\}$ in 2D, we want a 1D representation
- project $\left\{\boldsymbol{x}^{(i)}\right\}$ onto a line $\boldsymbol{w} \cdot \boldsymbol{x}=0$

- Find \boldsymbol{w} to minimizes the sum of squared distances to the line

Vector projections

- $\boldsymbol{x} . \boldsymbol{u}=\|\boldsymbol{x}\|\|\boldsymbol{u}\| \cos \theta$
- Assuming $\|\boldsymbol{u}\|=\mathbf{1}$,
- $\boldsymbol{x} . \boldsymbol{u}=\|\boldsymbol{x}\| \cos \theta=z_{u} \rightarrow$ value of x along u_{x}
- distance of x to projection is
$\left\|z_{u} \boldsymbol{u}-\boldsymbol{x}\right\|=\|(\boldsymbol{x} . \boldsymbol{u}) \boldsymbol{u}-\boldsymbol{x}\|$

Principal component analysis

- For a 1D embedding along direction \boldsymbol{u}, distance of \boldsymbol{x} to the projection along \boldsymbol{u} is given by

$$
\left\|z_{u} \boldsymbol{u}-\boldsymbol{x}\right\|=\|(\boldsymbol{x} \cdot \boldsymbol{u}) \boldsymbol{u}-\boldsymbol{x}\|
$$

- More generally for k dimensional embedding:
- find orthonormal basis of the k dimensional subspace

$$
\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}} \in \mathbb{R}^{d} \text {, i.e., } \boldsymbol{u}_{\boldsymbol{i}} . \boldsymbol{u}_{\boldsymbol{j}}=1 \text { if } i=j \text {, and } 0 \text { otherwise }
$$

- let $\boldsymbol{U} \in \mathbb{R}^{k \times d}$ be the matrix with $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ along rows
- distance of projection of \boldsymbol{x} to $\operatorname{span}\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}\right\}$

$$
\left\|U^{\top} U x-x\right\|
$$

- also from orthonormality of $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$, check $\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}$
- PCA objective

$$
\min _{\boldsymbol{U} \in \mathbb{R}^{k \times d}} \sum_{i=1}^{N}\left\|\boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}^{(i)}-\boldsymbol{x}^{(i)}\right\|^{2} \text { s.t. } \boldsymbol{U} \boldsymbol{U}^{\top}=I
$$

PCA

- PCA objective

$$
\min _{\boldsymbol{U} \in \mathbb{R}^{k \times d}} \frac{1}{N} \sum_{i=1}^{N}\left\|\boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}^{(i)}-\boldsymbol{x}^{(i)}\right\|^{2} \text { s.t. } \boldsymbol{U} \boldsymbol{U}^{\top}=I
$$

- Also, for all $\boldsymbol{U} \boldsymbol{U}^{\top}=I$

$$
\begin{aligned}
\left\|\boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}-\boldsymbol{x}\right\|^{2} & =\|\boldsymbol{x}\|^{2}+x^{\top} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}-2 \boldsymbol{x}^{\top} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x} \\
& =\|\boldsymbol{x}\|^{2}-\boldsymbol{x}^{\top} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}=\|\boldsymbol{x}\|^{2}-\|\boldsymbol{U} \boldsymbol{x}\|^{2}
\end{aligned}
$$

- Equivalent PCA objective

$$
\max _{U} \frac{1}{N} \sum_{i=1}^{N}\left\|\boldsymbol{U} \boldsymbol{x}^{(i)}\right\|^{2}=\sum_{j \in[k]} u_{j}^{\top} \widehat{\Sigma}_{x x} u_{j} \text { s.t. } \boldsymbol{U} \boldsymbol{U}^{\top}=I
$$

where $\hat{\Sigma}_{x x}=\frac{1}{N} \sum_{i=1}^{N} x^{(i)} x^{(i)^{\top}}$ (derivation in board)

- This is the same as finding top k eigenvectors of $\hat{\Sigma}_{x x}$

PCA algorithm

- Given $S=\left\{x^{(i)} \in \mathbb{R}^{d}: i=1,2, \ldots, N\right\}$
- Let $X \in \mathbb{R}^{N \times d}$ be data matrix
- make sure X is re-centered so that column mean is 0
- $\widehat{\Sigma}_{x x}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)^{\top}}=\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \in \mathbb{R}^{d \times d}$
- $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}} \in \mathbb{R}^{d}$ are top k eigenvectors of $\widehat{\Sigma}_{x x}$

How to pick k ?

- Data assumed to be low dimensional projection + noise
- Only keep projections onto components with large eigenvalues and ignore the rest

Eigenfaces

- Input images:
- Principal components:

- Turk and Pentland '91

SVD version

- Given $S=\left\{\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}: i=1,2, \ldots, N\right\}$
- Let $\boldsymbol{X} \in \mathbb{R}^{N \times d}$ be data matrix
- make sure \boldsymbol{X} is re-centered so that column mean is 0
- $\boldsymbol{X}=\overline{\boldsymbol{V}} \overline{\boldsymbol{S}} \overline{\boldsymbol{U}}^{\top}$ be the Singular Value Decomposition (SVD) of \boldsymbol{X}, where
- $\bar{V} \in \mathbb{R}^{N \times d}$ have orthonormal columns, i.e., $\bar{V}^{\top} \bar{V}=I$
- columns of $\overline{\boldsymbol{V}}$ are called left singular vectors
$\circ \overline{\boldsymbol{U}} \in \mathbb{R}^{d \times d}$ also has orthonormal columns, i.e., $\bar{U}^{\top} \overline{\boldsymbol{U}}=I$
- columns of $\overline{\boldsymbol{U}}$ are called right singular vectors
- $\overline{\boldsymbol{S}}=\operatorname{diagonal}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d}\right) \in \mathbb{R}^{d \times d}$
- $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d}$ are called the singular values
- First k columns of $\overline{\boldsymbol{U}}$ are the $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ we want.
- Representation of $x \in \mathbb{R}^{d}$ as $z(\boldsymbol{x}) \in \mathbb{R}^{k}$ is given by

$$
z(\boldsymbol{x})_{j}=\sigma_{j} \boldsymbol{u}_{j}, \boldsymbol{x} \quad \text { for } j=1,2, \ldots, k
$$

Other linear dimensionality reduction

- PCA: given data $x \in \mathbb{R}^{d}$, find $\mathrm{U} \in \mathbb{R}^{k \times d}$ to minimize

$$
\min _{U}\left\|U^{\top} U x-x\right\|_{2}^{2} \text { s.t. } U U^{\top}=I
$$

- Canonical correlation analysis: given two "views" of data $x \in \mathbb{R}^{d}$ and $x^{\prime} \in \mathbb{R}^{d^{\prime}}$, find $U \in \mathbb{R}^{k \times d}, U^{\prime} \in \mathbb{R}^{k \times d^{\prime}}$ to minimize

$$
\left\|U x-U^{\prime} x^{\prime}\right\|_{2}^{2} \text { s.t. } U U^{\top}=U^{\prime} U^{\prime \top}=I
$$

- Sparse dictionary learning: learn a sparse representation of x as a linear combination of over-complete dictionary $x \rightarrow D z$ where $\mathrm{D} \in \mathbb{R}^{d \times m}, z \in \mathbb{R}^{m}$
- unlike PCA, here $m \gg d$ so z is higher dimensional, but learned to be sparse!
- Independent component analysis
- Factor analysis
- Linear discriminant analysis

Non linear dimensionality reduction

- Isomap
- Autoencoders
- Kernel PCA
- Local linear embedding
- Check out t-SNE for 2D visualization

Isomap

[Tenenbaum, Silva, Langford. Sclence 2000]

Isomap - algorithm

- Dataset of N points $S=\left\{x^{(i)} \in \mathbb{R}^{d}: i=1,2, \ldots, N\right\}$
- Represent the points as a kNN-graph with weights proportional to distance between the points
- The geodesic distance $d\left(x, x^{\prime}\right)$ between points in the manifold is the length of shortest path in the graph
- Use any shortest path algorithm can be used to construct a matrix $M \in \mathbb{R}^{N \times N}$ of $d\left(x^{(i)}, x^{(j)}\right)$ for all $x^{(i)}, x^{(j)} \in S$
- MDS: Find a (low dimensional) embedding $z(x)$ of x so that distances are preserved

$$
\min _{Z} \sum_{i, j \in[N]}\left(\left\|z\left(x^{(i)}\right)-z\left(x^{(j)}\right)\right\|-M_{i j}\right)^{2}
$$

\circ sometimes $\min _{\mathrm{Z}} \sum_{i, j \in[N]} \frac{\left(\left\|z\left(x^{(i)}\right)-z\left(x^{(j)}\right)\right\|-M_{i j}\right)^{2}}{M_{i j}^{2}}$

Autoencoders

- Recall neural networks as feature learning

- was learned for some supervised learning task
- weights learned by minimizing $\ell\left(v_{o u t}, y\right)$
- but we don't have y anymore!

Autoencoders

- Recall neural networks as feature learning

- was learned for some supervised learning task
- weights learned by minimizing $\ell\left(v_{o u t}, y\right)$
- but we don't have y anymore!
- instead use another "decoder" network to reconstruct x

Autoencoders

- $\phi(x)=f_{W_{1}}(x)$
- $\tilde{\boldsymbol{x}}=f_{W_{2}}(\phi(\boldsymbol{x}))$
- some loss $\ell(\tilde{x}, x)$

$$
\widehat{W}_{1}, \widehat{W}_{2}=\min _{W_{1}, W_{2}} \sum_{i=1}^{N} \ell\left(f_{W_{2}}\left(f_{W_{1}}\left(\boldsymbol{x}^{(i)}\right)\right), \boldsymbol{x}^{(i)}\right)
$$

- learn using SGD with backpropagation

