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Topics so far

* Linear regression

* Classification
o Logistic regression
o Maximum margin classifiers, kernel trick
o Generative models
o Neural networks
o Ensemble methods

* Today and Tomorrow
o Unsupervised learning — dimensionality reduction, clustering
o Review



Unsupervised learning

* Unsupervised learning:
Requires data x € X, but no
labels

* Goal?: Compact
representation of the data by
detecting patterns

o e.g. Group emails by topic

e Useful when we don’t know
what we are looking for

o makes evaluation tricky

e Applications in visualization,
exploratory data analysis,
semi-supervised learning




Clustering




Clustering languages
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Clustering species (phylogeny)
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Image clustering/segmentation
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Goal: Break up the image into meaningful or

perceptually similar regions
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[Slide from James Hayes]

Current trend is
to use datasets
with labels for
such task

e.g., MS COCO




Dimensionality reduction

* Input data x € X may have thousands or millions of
dimensions!
o e.g., text data represented as bag or words
o e.g., video stream of images
o e.g., fIMRI data #voxels x #timesteps

* Dimensionality reduction: represent data with fewer
dimensions
o easier learning in subsequent tasks (preprocessing)
o Visualization
o discover intrinsic patterns in the data



Manifolds




Embeddings
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Low dimensional embedding

* Given high dimensional feature
X = [Xl,xZ, ...,xd]
find transformations

z(x) = |z,(x), zp(x), ..., Z (x)]

so that “almost all useful information” about x is
retained in z(x)

* In general k < d, and z(x) is not invertible

* Transformation learned from a dataset of examples of x
S={xD eR%:i=12,..,N}
o Note: typically no labels y
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Linear dimensionality reduction

* Given high dimensional feature

X = [xq,%x9,..,x4]
find transformations

z = z(x) = [z1(x), 2, (X), ..., 7 (x)]
* Restrict z(x) to be a linear function of x
Z1 = Wqi. X
Zo = Wo. X

Wg. X

z=Wx
where
z € Rk,
W € RRXd
x € R

only question
is which W?
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Linear dimensionality 2D example

* Given points S = {x(i):i =1,2,...,N}in 2D, we want a
1D representation
o project {x(i)} ontoalinew.x =0

o Find w to minimizes the sum of squared distances to the line
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Vector projections

 x.u = ||x||||ul|| cos 6
* Assuming ||ul| = 1,

* x.u = |[x[[cos 6 = z,, 2 value of x along uy, !
|
6

e distance of x to projection is
|z u — x| = [|(x. wu — x|
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Principal component analysis

* For a 1D embedding along direction u, distance of x to the
projection along u is given by
|z u — x| = [|(x. w)u — x||

* More generally for k dimensional embedding:

o find orthonormal basis of the k dimensional subspace
Up, Uy, ..., U, € RY ie, u;u; = 1if i = j, and 0 otherwise
o let U € R**% be the matrix with Uy, Uy, ..., Uy, along rows
o distance of projection of x to span{uq, u,, ..., Uy}
IlUTUx — x||

o also from orthonormality of uq, u,, ..., U, check UUu'" =1

* PCA objective .

min ZHUTUx@ —x®|° s.t. UUT =1
=1

UE]RkXd
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PCA

* PCA objective

N
1 . .
min —Z”UTUx(‘) —xD|* s.t. UUT =1
veRk*d N ¢ 4
L=
e Also, forallUUT =1

IlUTUx —x||?> = ||x||? +x"TUTUU"Ux — 2x"U"Ux
= ||x||* —xTUTUx = ||x||* — ||Ux]||?

* Equivalent PCA objective

N
1 . ~
ml?XNZ:HUx(‘)”z = 2 ul Su s.t. UUT =1
i=1 JE[K]
1

where 2, = " ’ivzlx(i)x(i)T (derivation in board)

* This is the same as finding top k eigenvectors of fxx
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PCA algorithm

- Given S = {x¥ e R%:i =1,2,...,N}

e Let X € RV*4 pe data matrix

o make sure X is re-centered so that column meanis O

‘U, Uy, ...

N x(z) x(l)T XT X € Rdxd

l:

,uy, € R? are top k eigenvectors of 2,
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How to pick k?

* Data assumed to be low dimensional projection + noise

* Only keep projections onto components with large
eigenvalues and ignore the rest

Percentage of total vaniance captured
imension z, for =1t 2 A
0 - P/ by dimension z, for j=1to 10 - z\‘
- !
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Slide credit: Arti Singh
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* Input images:

Eigenfaces

Principal components:

urk and Pentland ‘91
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SVD version

- Given S = {xV e R%:i =1,2,..,N}

e Let X € RV*4 pe data matrix
o make sure X is re-centered so that column mean is 0

« X = VSU' be the Singular Value Decomposition (SVD) of
X, where

o V € RN*4 have orthonormal columns, i.e., V'V =1
_ = columns of V are called left singular vectors -
o U € R%*? 3150 has orthonormal columns,i.e, UTU = I
= columns of U are called right singular vectors

o § = diagonal(oy, 0y, ...,04) € RE*4
" 04,05, ...,04 are called the singular values

e First k columns of U are the Uq, Uy, ..., U, We want.

e Representation of x € R? as z(x) € R¥ is given by
Z(x)j = 0j U;.X for j =1,2,....k
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Other linear dimensionality reduction

* PCA: given data x € RY, find U € R**4 to minimize
mUin \UTUx — x||5 s.t. UUT =1

* Canonical correlation analysis: given two "views” of data x € R4
and x’' € R%  find U € RF*% [’ € RF*4 1o r_nrinimize
lUx —U'x'||5 s.t. UUT =U'U" =1

* Sparse dictionary learning: learn a sparse representation
of x as a linear combination of over-complete dictionary
x — Dz where D € R&*X™M 7z ¢ R™

o unlike PCA, here m > d so z is higher dimensional,
but learned to be sparse!

* Independent component analysis
* Factor analysis
* Linear discriminant analysis
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Non linear dimensionality reduction

* [somap

* Autoencoders

* Kernel PCA

* Local linear embedding

* Check out t-SNE for 2D visualization
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Isomap — algorithm

* Dataset of N points § = {x(i) e R4 =1,2, ...,N}

* Represent the points as a kNN-graph with weights proportional to
distance between the points

* The geodesic distance d(x, x") between points in the manifold is
the length of shortest path in the graph

* Use any shortest path algorithm can be u.sed to construct a matrix
M € RNVNXN of d(x(‘),x(f)) forallx®,xW e S

* MDS: Find a (low dimensional) embedding z(x) of x so that
distances are preserved

mn Y (=) = 20 - )

i,JE|N]

(lz(x @)=z (xD)||-m;)°
i,jE[N] Mizj

o sometimes mmZ
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Autoencoders

e Recall neural networks as feature learning

o wWas learned for some supervised learning task
o weights learned by minimizing £(v,yu¢, V)
o but we don’t have y anymore!
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Autoencoders

e Recall neural networks as feature learning

©)

©)

©)

©)

was learned for some supervised learning task

weights learned by minimizing (v, ¥)

but we don’t have y anymore!

instead use another “decoder” network to reconstruct x
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Autoencoders

@ 3
@ e

* Pp(x) = fwl(x)
* X = fw, (P(x))

e some loss £(X, x)

W,, W, = min zf fw, fwl(x(‘))) x(‘))

wW1,W5

* learn using SGD with backpropagatlon
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