Day 8: Ensemble
methods, boosting

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago
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Topics so far

* Linear regression

* Classification
o Logistic regression
o Maximum margin classifiers, kernel trick
o Generative models

o Neural networks, backpropagation, NN training — optimization
and regularization, special architectures — CNNs, RNNs,
encoder-decoder

* Remaining Topics
o Ensemble methods, boosting

o Unsupervised learning — clustering, dimensionality reduction
o Review and topics not covered!



Ensemble learning

* Ensemble learning
o Create a population of base learning f3, f5, ... fy: X = Y
o Combine the predictors to form a composite predictor

* Example in classification with Y = {—1,1}-> assign “votes” a,, to each
classifier f,,, and take weighted-majority vote

F(x) = sign(TM -y apmfin ()
o Individual classifiers can be very simple, e.g., x; = 10, xc < 5
* Why?
o more powerful models = reduce bias

= e.g., majority vote of linear classifiers can give decision boundaries that are
intersections of halfspaces

o reduce variance

= averaging classifiers f3, f,, ... fy trained independently on different iid
datasets 51, S5, ..., Sy can reduce variance of composite classifier



Reducing bias using
ensembles



Decision trees

* Each non-leaf node tests a binary
condition on some feature xy,
o if condition satisfies then go left, else go
right
o leaf nodes have label (typically the label

of majority class of training examples at
that node

 Classifying a point by decision tree can be
seen as a sequence of classifiers refined as
we follow the path to a leaf.
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Combining “simple” models

* Smooth-ish tradeoff between bias-complexity
o start with simple models with large bias and low variance
o learn more complex classes by composign simple models

* For example consider classifiers f;, fo, ..., fy based on only one feature
(decision stumps), i.e., each

fm(x; 0,,) = 1(ka > Tm) where 6,,, = (k;,, Ton)

* H = {x » majority(a,f1(x; 01), a2 f>(x; 03), ..., ap fu (x; Om)) }
contains very complex boundaries

e demo (by Nati Srebro)

* So clearly combining simple
classifiers can reduce bias. How do
we combine classifiers?

Figure credit: Nati Srebro



Combining “simple” models

* Given a family of models f3, f>, ...: X = Y, we want to combine?
 Weighted averaging of models:
o parameterize combined classifier using a,,, as
F(x) = Y1 @mfm (%)
o minimize loss over combined model
min 2L, £(F,(x©), y©)
e Alternative algorithm: greedy approach
o Fy(x) =0
o foreachroundt=1,2,..,T

= find the best model to minimize the incremental change from F;_;

min zg(pt 1(x()) + f(t)(x(L)) y(l))

at’f(t)

o Output cIaSS|f|erFT(x) =T . a,f®x)



Adaboost

Training data S = {(x(i),y(i)):i =1,2,..,N}

* Maintain weights Wi(t) for each example
(x®,y®), initially all W, = -

Example credit: Greg Shaknarovich
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Adaboost

Training data S = {(x(i),y(i)):i =1,2,..,N}

* Maintain weights Wl-(t) for each example
(x®,y®), initially all w® = X

e Fort=1,2,...,T

o Normalize weights Dl-(t) =

o Pick a classifier f; has better than
0.5 weighted loss

e = XIL, DI (f,(x @), y®)

1_Et

1
o Seta; = Elog -
t

o Update weights
Wi(t+1) _ Wi(t) exp (_aty(i)ft(x(i)))

* Output strong classifier Fr(x) = sign(Q; a;f:(x))

Example credit: Greg Shaknarovich
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Adaboost

 Demo again (code by Nati Srebro)

 What are we doing in Adaboost?
o Some algorithm to do ensembles
o Learning sparse linear predictors with large (infinite?)
dimensional features
= Sparsity controls complexity

= Number of iterations controls sparsity
=>» early stopping as regularization

o Coordinate descent on exponential loss (briefly next)

e Variants of AdaBoost
o FloatBoost: After each round, see if removal of a previously added classier
is helpful.
o Totally corrective AdaBoost: update the a's for all weak classifiers
selected so far by minimizing loss

17



Exponential loss

* Exponential loss £(f(x),y) = exp(—f(x)y) another
surrogate loss

* Ensemble classifier

Fo (x) = sign(X; a¢fi (x)) >

. . fix)y
 We will not derive, but can

show that adaboost updates
correspond to coordinate descent on ERM with exp loss

m;ni exp (— z a, ft(x(i))y(i)>

=1 t



Example: Viola-Jones Face Detector

* Classify each square in an image as “face” or “no-face”

X = patches of 24x24 pixels, say

Slide credit: Nati Srebro



Viola-Jones “Weak Predictors”/Features

B = { 1(gy:(x) < 8) | 8 € R,rectrinimage,t € {4,B,C,D,A,B,C, _}}

where g, +(x) =sum of “blue” pixels —sum of “red” pixels

N B LA

Slide credit: Nati Srebro



Viola-Jones Face Detector

e Simple implementation of boosting using generic (non-face specific) “weak
learners” /features

o Can be used also for detecting other objects

» Efficient method using dynamic programing and caching to find good weak
predictor

* About 1 million possible g, ;, but only very few used in returned predictor
* Sparsity:

2 Generalization
2 Prediction speed! (and small memory footprint)

* To runin real-time (on 2001 laptop), use sequential evaluation
o First evaluate first few h; to get rough prediction
o Only evaluate additional h; on patches where the leading ones are promising

Slide credit: Nati Srebro



Ensembling to reduce variance
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Averaging predictors

* Averaging reduces variance: if Z1,Z,, ..., Z; are independent random
variables each with mean u and variance of g2

1 M o2
e (3 20)

 What happens to mean?

E (M %zlzm) = H

23



Averaging predictors

Averaging reduces variance: if Zy, Z,, ..., Zy; are independent random
variables each with mean u and variance of g2

1 M o2
e (3 20)

What happens to mean?
1vMm
E (M mzlzm) = H
If we had M models f3, f5, ... fiy trained independently on different iid
datasets S4, 55, ..., Sy, then averaging the results of the models will
o reduce variance: it will be less sensitive to specific training data
o without increasing the bias: on average all classifiers will do as well

But we have only one dataset! How do we get multiple models
o Remember the models have to be independent!

24



Bagging: Bootstrap aggregation

Averaging independent models reduces variance without increasing bias.

e But we don’t have independent datasets!
o Instead take repeated bootstrap samples from training set S

* Bootstrap sampling: Given dataset S = {(x(i),y(i)):i = 1,2, ...,N},
create S’ by drawing N examples at random with replacement from S

* Bagging:
o Create M bootstrap datasets y

1,52 e S
o Train distinct models f,,;: X = Y
Build Multiple \

= O > = U <=

4_N0'.4_ O -
- LN
—

by training only on S,

N
L= _‘O"-.4— U

o Output final predictor <?
. 1 M . ifiers -
F(x) = HZm:l fm (x) (for regression)

or F(x) = majority(f,,;(x)) (for classification)

Figure credit: David Sontag
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Bagging

* Most effective while combining high variance, low bias predictors
o unstable non-linear predictors like decision trees
o “overfitting quirks” of different trees canceling out

* Not very useful with linear predictors

» Useful property of bagging: “out of bag” (OOB) data

o in each “bag”, treat the examples that didn't make it to the bag as a kind
of validation set

o While learning predictors, keep track of OOB accuracy

26



Bagging example
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Slide/example credit: David Sontag



Random forests

* Ensemble method specifically built for decision trees

 Two sources of randomness

o Sample bagging: Each tree grown with a bootstrapped training data

o Feature bagging: at each node, best split decided over only a subset of
random features = increases diversity among trees

e Algorithm
o Create S1,85,...,8y

o For each m, grow a decision tree T,,, by repeating the following at each
node until some stopping condition
= select from d features of x
= pick best variable/split threshold among the K selected features
= split the node into two child nodes based on above condition

o Output majority vote of {T;,,}} _;



Ensembles summary

e Reduce bias:

o build ensemble of low-variance, high-bias predictors
sequentially to reduce bias

o AdaBoost: binary classication, exponential surrogate loss

e Reduce variance:

o build ensemble of high-variance, low-bias predictors in
parallel and use randomness and averaging to reduce
variance

o random forests, bagging

* Problems
o Computationally expensive (train and test time)
o Often loose interpretability
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