Day 8: Ensemble methods, boosting

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

27 June 2018

Topics so far

- Linear regression
- Classification
 - Logistic regression
 - Maximum margin classifiers, kernel trick
 - Generative models
 - Neural networks, backpropagation, NN training optimization and regularization, special architectures – CNNs, RNNs, encoder-decoder
- Remaining Topics
 - Ensemble methods, boosting
 - O Unsupervised learning clustering, dimensionality reduction
 - o Review and topics not covered!

Ensemble learning

• Ensemble learning

- Create a population of base learning $f_1, f_2, \dots f_M: \mathcal{X} \to \mathcal{Y}$
- Combine the predictors to form a composite predictor
- Example in classification with $\mathcal{Y} = \{-1,1\} \rightarrow$ assign "votes" α_m to each classifier f_m and take weighted-majority vote

$$F(x) = \operatorname{sign}(\sum_{m=1}^{M} \alpha_m f_m(x))$$

 $_{\circ}$ Individual classifiers can be very simple, e.g., $x_1 \ge 10, x_5 \le 5$

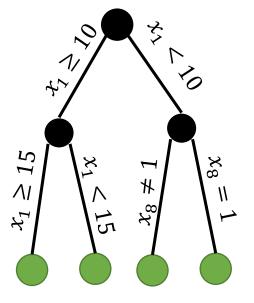
• Why?

- $_{\circ}$ more powerful models \rightarrow reduce bias
 - e.g., majority vote of linear classifiers can give decision boundaries that are intersections of halfspaces
- reduce variance
 - averaging classifiers $f_1, f_2, \dots f_M$ trained independently on different iid datasets S_1, S_2, \dots, S_M can reduce variance of composite classifier

Reducing bias using ensembles

Decision trees

- Each non-leaf node tests a binary condition on some feature x_k
 - o if condition satisfies then go left, else go right
 - leaf nodes have label (typically the label of majority class of training examples at that node
- Classifying a point by decision tree can be seen as a sequence of classifiers refined as we follow the path to a leaf.

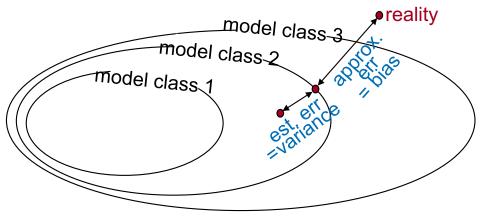


Combining "simple" models

- Smooth-ish tradeoff between bias-complexity
 - start with simple models with large bias and low variance
 learn more complex classes by composign simple models
- For example consider classifiers f_1, f_2, \dots, f_M based on only one feature (decision stumps), i.e., each

$$f_m(x; \theta_m) = 1(x_{k_m} \ge \tau_m)$$
 where $\theta_m = (k_m, \tau_m)$

- $\mathcal{H} = \{x \rightarrow majority(\alpha_1 f_1(x; \theta_1), \alpha_2 f_2(x; \theta_2), \dots, \alpha_M f_M(x; \theta_M))\}$ contains very complex boundaries
- demo (by Nati Srebro)
- So clearly combining simple classifiers can reduce bias. How do we combine classifiers?



Combining "simple" models

- Given a family of models $f_1, f_2, \dots : \mathcal{X} \to \mathcal{Y}$, we want to combine?
- Weighted averaging of models:
 - \circ parameterize combined classifier using α_m as

 $F_{\alpha}(x) = \sum_{m=1}^{M} \alpha_m f_m(x)$

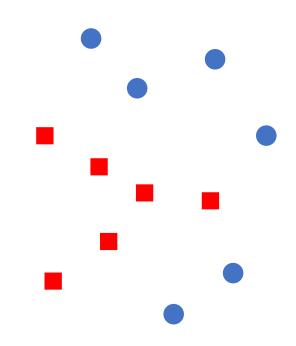
o minimize loss over combined model

 $\min_{\alpha} \sum_{i=1}^{N} \ell(F_{\alpha}(x^{(i)}), y^{(i)})$

- Alternative algorithm: greedy approach
 - $\circ F_0(x) = 0$
 - for each round t = 1, 2, ..., T
 - find the best model to minimize the incremental change from F_{t-1} $\min_{\alpha_t, f^{(t)}} \sum_{i=1}^N \ell(F_{t-1}(x^{(i)}) + \alpha_t f^{(t)}(x^{(i)}), y^{(i)})$
 - Output classifier $F_T(x) = \sum_{t=1}^T \alpha_t f^{(t)}(x)$

Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

• Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$

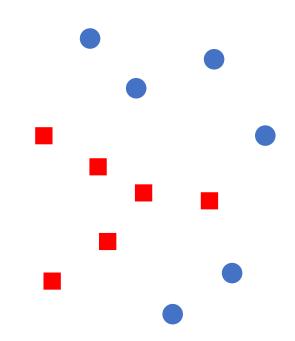


Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

• Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$

• For *t* = 1,2, ..., T

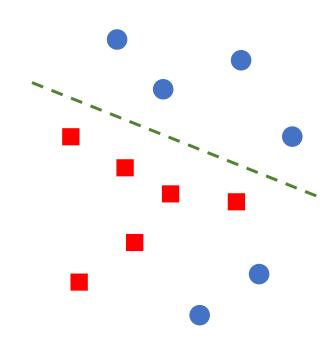
• Normalize weights
$$D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$$



Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

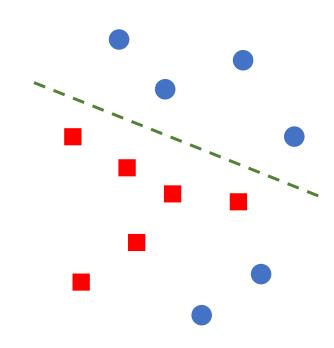
- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For *t* = 1,2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier *f_t* has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01} (f_t(x^{(i)}), y^{(i)})$$



Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For t = 1, 2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier f_t has better than
 0.5 weighted loss
 - $\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01} (f_t(x^{(i)}), y^{(i)})$ $\circ \text{ Set } \alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$



Example credit: Greg Shaknarovich

Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

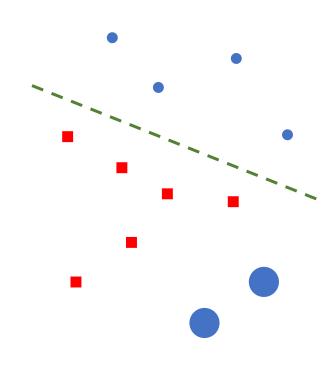
- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For *t* = 1,2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier *f_t* has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$$

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

Update weights

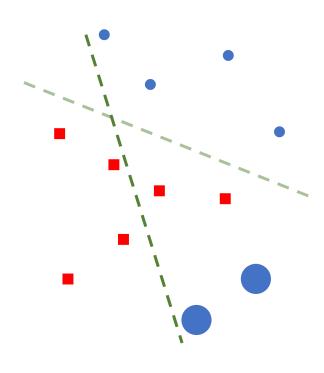
$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$



Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For *t* = 1,2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier *f_t* has better than
 0.5 weighted loss
 - $\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$
 - Set $\alpha_t = \frac{1}{2} \log \frac{1 \epsilon_t}{\epsilon_t}$
 - Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$

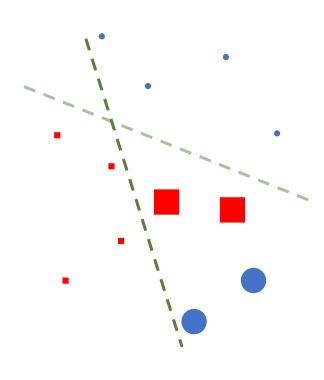


Example credit: Greg Shaknarovich

Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For *t* = 1,2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier f_t has better than
 0.5 weighted loss
 - $\epsilon_{t} = \sum_{i=1}^{N} D_{i}^{(t)} \ell^{01}(f_{t}(x^{(i)}), y^{(i)})$
 - Set $\alpha_t = \frac{1}{2} \log \frac{1 \epsilon_t}{\epsilon_t}$
 - Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$



Example credit: Greg Shaknarovich

Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

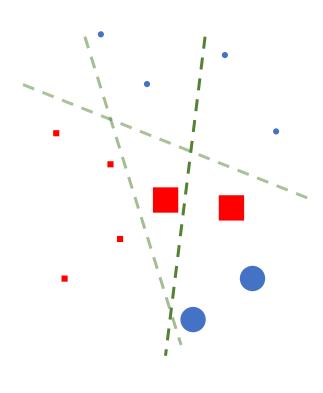
- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For *t* = 1,2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier *f_t* has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$$

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$



Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

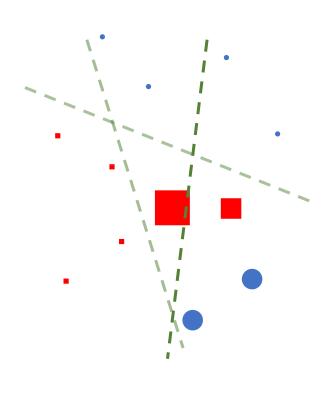
- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For *t* = 1,2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier f_t has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$$

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$$

Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$



Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For t = 1, 2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier f_t has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$$

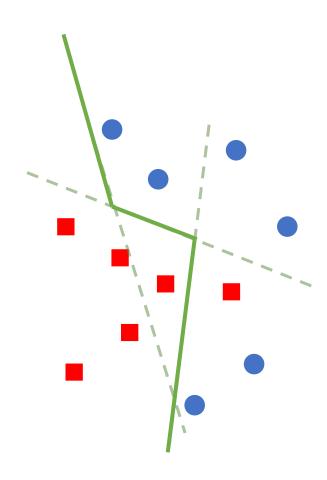
• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$

• Output strong classifier $F_T(x) = \operatorname{sign}(\sum_t \alpha_t f_t(x))$

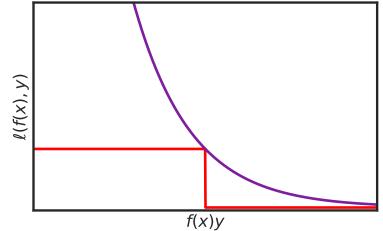
Example credit: Greg Shaknarovich



- Demo again (code by Nati Srebro)
- What are we doing in Adaboost?
 - $_{\circ}\,$ Some algorithm to do ensembles
 - Learning *sparse* linear predictors with large (infinite?) dimensional features
 - Sparsity controls complexity
 - Number of iterations controls sparsity
 - → early stopping as regularization
 - Coordinate descent on exponential loss (briefly next)
- Variants of AdaBoost
 - FloatBoost: After each round, see if removal of a previously added classier is helpful.
 - Totally corrective AdaBoost: update the $\alpha's$ for all weak classifiers selected so far by minimizing loss

Exponential loss

- Exponential loss $\ell(f(x), y) = \exp(-f(x)y)$ another surrogate loss
- Ensemble classifier $F_{\alpha}(x) = \operatorname{sign}(\sum_{t} \alpha_{t} f_{t}(x))$



 We will not derive, but can show that adaboost updates correspond to coordinate descent on ERM with exp loss

$$\min_{\alpha} \sum_{i=1}^{N} \exp\left(-\sum_{t} \alpha_{t} f_{t}(x^{(i)}) y^{(i)}\right)$$

Example: Viola-Jones Face Detector

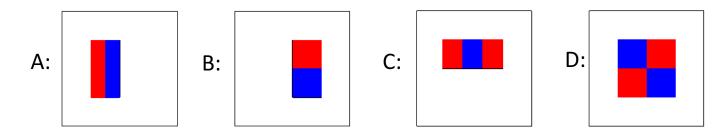
• Classify each square in an image as "face" or "no-face"

• $\mathcal{X} =$ patches of 24x24 pixels, say

Slide credit: Nati Srebro

Viola-Jones "Weak Predictors"/Features

 $\mathcal{B} = \left\{ 1 \left(g_{r,t}(x) < \theta \right) \mid \theta \in \mathbb{R}, \text{rect } r \text{ in image, } t \in \{A, B, C, D, \overline{A}, \overline{B}, \overline{C}, \overline{D}\} \right\}$ where $g_{r,t}(x) = \text{sum of "blue" pixels} - \text{sum of "red" pixels}$



Slide credit: Nati Srebro

Viola-Jones Face Detector

- Simple implementation of boosting using generic (non-face specific) "weak learners"/features
 - Can be used also for detecting other objects
- Efficient method using dynamic programing and caching to find good weak predictor
- About 1 million possible $g_{r,t}$, but only very few used in returned predictor
- Sparsity:
 - → Generalization
 - → Prediction speed! (and small memory footprint)
- To run in real-time (on 2001 laptop), use sequential evaluation
 - $_{\circ}$ First evaluate first few h_t to get rough prediction
 - $_{\circ}~$ Only evaluate additional h_t on patches where the leading ones are promising

Slide credit: Nati Srebro

Ensembling to reduce variance

Averaging predictors

• Averaging reduces variance: if $Z_1, Z_2, ..., Z_M$ are independent random variables each with mean μ and variance of σ^2

$$var\left(\frac{1}{M}\sum_{m=1}^{M}Z_{m}\right) = \frac{\sigma^{2}}{M}$$

• What happens to mean?

$$\mathbb{E}\left(\frac{1}{M}\sum_{m=1}^{M}Z_{m}\right) = \mu$$

Averaging predictors

• Averaging reduces variance: if $Z_1, Z_2, ..., Z_M$ are independent random variables each with mean μ and variance of σ^2

$$\operatorname{var}\left(\frac{1}{M}\sum_{m=1}^{M}Z_{m}\right) = \frac{\sigma^{2}}{M}$$

• What happens to mean?

$$\mathbb{E}\left(\frac{1}{M}\sum_{m=1}^{M}Z_{m}\right) = \mu$$

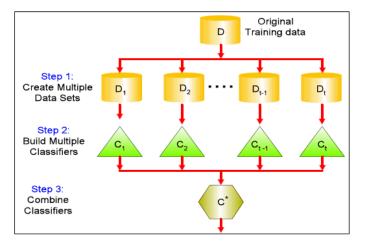
- If we had M models $f_1, f_2, \dots f_M$ trained independently on different iid datasets S_1, S_2, \dots, S_M , then averaging the results of the models will
 - reduce variance: it will be less sensitive to specific training data
 - without increasing the bias: on average all classifiers will do as well
- But we have only one dataset! How do we get multiple models
 - o Remember the models have to be independent!

Bagging: Bootstrap aggregation

Averaging independent models reduces variance without increasing bias.

- But we don't have independent datasets!
 - $_{\circ}~$ Instead take repeated bootstrap samples from training set S
- Bootstrap sampling: Given dataset $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$, create S' by drawing N examples at random with replacement from S
- Bagging:
 - Create M bootstrap datasets S_1, S_2, \dots, S_M
 - Train distinct models $f_m: \mathcal{X} \to \mathcal{Y}$ by training only on S_m
 - Output final predictor
 - $F(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$ (for regression)

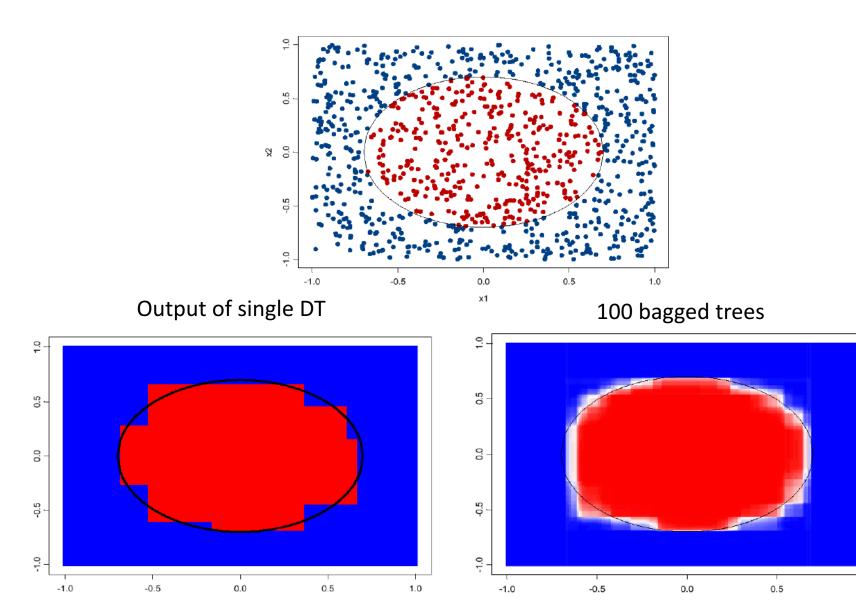
or $F(x) \stackrel{_{M}}{=} majority(f_{m}(x))$ (for classification)



Bagging

- Most effective while combining high variance, low bias predictors
 - unstable non-linear predictors like decision trees
 - "overfitting quirks" of different trees canceling out
- Not very useful with linear predictors
- Useful property of bagging: "out of bag" (OOB) data
 - in each "bag", treat the examples that didn't make it to the bag as a kind of validation set
 - while learning predictors, keep track of OOB accuracy

Bagging example



Slide/example credit: David Sontag

1.0

Random forests

- Ensemble method specifically built for decision trees
- Two sources of randomness
 - Sample bagging: Each tree grown with a bootstrapped training data
 - Feature bagging: at each node, best split decided over only a subset of random features → increases diversity among trees
- Algorithm
 - Create bootsrapped datasets S_1, S_2, \dots, S_M
 - $_{\odot}~$ For each m, grow a decision tree T_m by repeating the following at each node until some stopping condition
 - select K features at random from d features of x
 - pick best variable/split threshold among the K selected features
 - split the node into two child nodes based on above condition
 - Output majority vote of $\{T_m\}_{m=1}^M$

Ensembles summary

- Reduce bias:
 - build ensemble of low-variance, high-bias predictors sequentially to reduce bias
 - AdaBoost: binary classication, exponential surrogate loss
- Reduce variance:
 - build ensemble of high-variance, low-bias predictors in parallel and use randomness and averaging to reduce variance
 - $_{\circ}$ random forests, bagging
- Problems
 - Computationally expensive (train and test time)
 - Often loose interpretability