Neural Architectures for Image, Language, and Speech Processing (Cont.)

Karl Stratos

June 27, 2018

Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models
Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

General Idea

Much of machine learning: given some complicated structure x, predict some complicated structure y

General Idea

Much of machine learning: given some complicated structure x, predict some complicated structure y

Machine translation:

$$
\begin{aligned}
& x=\text { Le programme a été mis en application } \\
& y=\text { And the programme has been implemented }
\end{aligned}
$$

General Idea

Much of machine learning: given some complicated structure x, predict some complicated structure y

Machine translation:

$$
\begin{aligned}
& x=\text { Le programme a été mis en application } \\
& y=\text { And the programme has been implemented }
\end{aligned}
$$

Encoder-decoder models are conditional models that handle this wide class of problems in two steps:

1. Encode the given input x using some architecture.
2. Decode y, typically in a sequential manner using an RNN.

Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models
Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

Basic Seq2Seq Framework

Model parameters

- Vector $e_{x} \in \mathbb{R}^{d}$ for every $x \in V^{\text {src }}$
- Vector $e_{y} \in \mathbb{R}^{d}$ for every $y \in V^{\operatorname{trg}} \cup\{*\}$
- Encoder $\operatorname{RNN} \psi: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{d^{\prime}}$ for $V^{\text {src }}$
- Decoder RNN $\phi: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{d^{\prime}}$ for V^{trg}
- Feedforward $f: \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{\left|V^{\mathrm{trg}}\right|}+1$

Basic Seq2Seq Framework

Model parameters

- Vector $e_{x} \in \mathbb{R}^{d}$ for every $x \in V^{\text {src }}$
- Vector $e_{y} \in \mathbb{R}^{d}$ for every $y \in V^{\mathrm{trg}} \cup\{*\}$
- Encoder RNN $\psi: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{d^{\prime}}$ for $V^{\text {src }}$
- Decoder RNN $\phi: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{d^{\prime}}$ for V^{trg}
- Feedforward $f: \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{\left|V^{\mathrm{trg}}\right|}+1$

Basic idea

1. Transform $x_{1} \ldots x_{m} \in V^{\text {src }}$ with ψ into some representation ξ.
2. Build a sequence model ϕ over V^{trg} conditioning on ξ.

Encoder

For $i=1 \ldots m$,

$$
h_{i}^{\psi}=\psi\left(e_{x_{i}}, h_{i-1}^{\psi}\right)
$$

Encoder

For $i=1 \ldots m$,

$$
\begin{gathered}
h_{i}^{\psi}=\psi\left(e_{x_{i}}, h_{i-1}^{\psi}\right) \\
h_{m}^{\psi}=\psi\left(e_{x_{m}}, \psi\left(e_{x_{m-1}}, \psi\left(e_{x_{m-2}}, \cdots \psi\left(e_{x_{1}}, h_{0}^{\psi}\right) \cdots\right)\right)\right)
\end{gathered}
$$

Decoder

Initialize $h_{0}^{\phi}=h_{m}^{\psi}$ and $y_{0}=*$.

Decoder

Initialize $h_{0}^{\phi}=h_{m}^{\psi}$ and $y_{0}=*$.
For $i=1,2, \ldots$, the decoder defines a probability distribution over $V^{\mathrm{trg}} \cup\{\mathrm{STOP}\}$ as $(\oplus$ denotes vector concatenation)

$$
\begin{aligned}
& h_{i}^{\phi}=\phi\left(e_{y_{i-1}} \oplus h_{m}^{\psi}, h_{i-1}^{\phi}\right) \\
& p_{\Theta}\left(y \mid x_{1} \ldots x_{m}, y_{0} \ldots y_{i-1}\right)=\operatorname{softmax}_{y}\left(f\left(h_{i}^{\phi}\right)\right)
\end{aligned}
$$

Decoder

Initialize $h_{0}^{\phi}=h_{m}^{\psi}$ and $y_{0}=*$.
For $i=1,2, \ldots$, the decoder defines a probability distribution over $V^{\mathrm{trg}} \cup\{\mathrm{STOP}\}$ as $(\oplus$ denotes vector concatenation)

$$
\begin{aligned}
& h_{i}^{\phi}=\phi\left(e_{y_{i-1}} \oplus h_{m}^{\psi}, h_{i-1}^{\phi}\right) \\
& p_{\Theta}\left(y \mid x_{1} \ldots x_{m}, y_{0} \ldots y_{i-1}\right)=\operatorname{softmax}_{y}\left(f\left(h_{i}^{\phi}\right)\right)
\end{aligned}
$$

Probability of translation $y_{1} \ldots y_{n}$ given $x_{1} \ldots x_{m}$:

$$
\begin{array}{r}
p_{\Theta}\left(y_{1} \ldots y_{n} \mid x_{1} \ldots x_{m}\right)=\prod_{i=1}^{n} p_{\Theta}\left(y_{i} \mid x_{1} \ldots x_{m}, y_{0} \ldots y_{i-1}\right) \times \\
p_{\Theta}\left(\operatorname{STOP} \mid x_{1} \ldots x_{m}, y_{0} \ldots y_{n}\right)
\end{array}
$$

Training

Given parallel text of N sentence-translation pairs $\left(x^{(1)}, y^{(1)}\right) \ldots\left(x^{(N)}, y^{(N)}\right)$, find parameters Θ^{*} that maximize the log likelihood of the data:

$$
\Theta^{*} \approx \underset{\Theta}{\arg \min }-\sum_{i=1}^{N} \log p_{\Theta}\left(y^{(i)} \mid x^{(i)}\right)
$$

Greedy Translation

Given sentence $x_{1} \ldots x_{m} \in V^{\text {sc }}$,

1. Encode the sentence: for $i=1 \ldots m$,

$$
h_{i}^{\psi}=\psi\left(e_{x_{i}}, h_{i-1}^{\psi}\right)
$$

Greedy Translation

Given sentence $x_{1} \ldots x_{m} \in V^{\text {sc }}$,

1. Encode the sentence: for $i=1 \ldots m$,

$$
h_{i}^{\psi}=\psi\left(e_{x_{i}}, h_{i-1}^{\psi}\right)
$$

2. Initialize $h^{\phi} \leftarrow h_{m}^{\psi}$ and $S \leftarrow[*]$.

Greedy Translation

Given sentence $x_{1} \ldots x_{m} \in V^{\text {src }}$,

1. Encode the sentence: for $i=1 \ldots m$,

$$
h_{i}^{\psi}=\psi\left(e_{x_{i}}, h_{i-1}^{\psi}\right)
$$

2. Initialize $h^{\phi} \leftarrow h_{m}^{\psi}$ and $S \leftarrow[*]$.
3. Keep repeating

$$
\begin{aligned}
h^{\phi} & \leftarrow \phi\left(e_{S[-1]} \oplus h_{m}^{\psi}, h^{\phi}\right) \\
y & \leftarrow \arg \max _{y \in V^{\mathrm{trg} \cup\{\mathrm{STOP}\}}} \operatorname{softmax}_{y}\left(f\left(h^{\phi}\right)\right) \\
S & \leftarrow S+[y]
\end{aligned}
$$

$$
\text { until } y=\text { STOP. }
$$

Decoder with Attention

- Instead of using 1 fixed vector to encode all $x_{1} \ldots x_{m}$, decoder decides which words to pay attention to.

Decoder with Attention

- Instead of using 1 fixed vector to encode all $x_{1} \ldots x_{m}$, decoder decides which words to pay attention to.
- For $i=1,2, \ldots$,

$$
\begin{aligned}
& h_{i}^{\phi}=\phi\left(e_{y_{i-1}} \oplus\left(\sum_{j=1}^{m} \alpha_{i, j} h_{j}^{\psi}\right), h_{i-1}^{\phi}\right) \\
& p_{\Theta}\left(y \mid x_{1} \ldots x_{m}, y_{0} \ldots y_{i-1}\right)=\operatorname{softmax}_{y}\left(f\left(h_{i}^{\phi}\right)\right)
\end{aligned}
$$

Attention Weights

$$
\sum_{j=1}^{m} \alpha_{i, j} h_{j}^{\psi}
$$

- $\alpha_{i, j}$: Importance of x_{j} for predicting i-th translation

Attention Weights

$$
\sum_{j=1}^{m} \alpha_{i, j} h_{j}^{\psi}
$$

- $\alpha_{i, j}$: Importance of x_{j} for predicting i-th translation
- Various options

$$
\begin{aligned}
& \beta_{i, j}=u^{\top} \tanh \left(W h_{i-1}^{\phi}+V h_{j}^{\psi}\right) \\
& \beta_{i, j}=\left(h_{i-1}^{\phi}\right)^{\top} h_{j}^{\psi} \\
& \beta_{i, j}=\left(h_{i-1}^{\phi}\right)^{\top} B h_{j}^{\psi}
\end{aligned}
$$

Typically take softmax to make them probabilities:

$$
\left(\alpha_{i, 1} \ldots \alpha_{i, m}\right)=\operatorname{softmax}\left(\beta_{i, 1} \ldots \beta_{i, m}\right)
$$

Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models
Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

CTC in Speech

- CTC is an approach to handle the following setting.
- Training time: given a pair of sequences $(\boldsymbol{x}, \boldsymbol{y})$ where the length of y is shorter than x.
- Test time: must map any input sequence \boldsymbol{x} to a corresponding sequence \boldsymbol{y}.
- CTC treats this problem as a latent-variable model in which there is an intermediate sequence \boldsymbol{z} with the same length as \boldsymbol{x} from which \boldsymbol{y} can be retrieved.
- Has been a dominant approach in speech recognition.
- Alternatively, can we just use seq2seq for this problem?

Input-Latent-Output Example

$$
\begin{array}{ll}
\boldsymbol{x}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} & x_{t} \in \mathbb{R}^{d} \\
\boldsymbol{z}=\mathrm{t} \mathrm{e} \mathrm{el} \epsilon \mathrm{l} & z_{t} \in \mathcal{C} \cup\{\epsilon\} \\
\boldsymbol{y}=\mathrm{t} \mathrm{ell} & y_{i} \in \mathcal{C}
\end{array}
$$

Other possible \boldsymbol{z} sequences

$$
\begin{aligned}
& \boldsymbol{z}=\epsilon \mathrm{tel} \epsilon \mathrm{I} \\
& \boldsymbol{z}=\mathrm{tel} \epsilon \epsilon \mathrm{I} \\
& \boldsymbol{z}=\mathrm{tel} \epsilon \mathrm{I} \epsilon
\end{aligned}
$$

CTC Model

- Encode $\boldsymbol{x}=x_{1} \ldots x_{T}$ into vectors $h_{1} \ldots h_{T} \in \mathbb{R}^{|\mathcal{C}|+1}$ (e.g., by CNN/RNN/CNN+RNN)
- The model defines the probability of $z_{t} \in \mathcal{C} \cup\{\epsilon\}$ independently of other z_{l} (conditioning on \boldsymbol{x}) as

$$
p\left(z_{t}=z \mid \boldsymbol{x}\right)=\operatorname{softmax}_{z}\left(h_{t}\right)
$$

CTC Training

$|\boldsymbol{x}|=T,|\boldsymbol{y}|=N$

- $p(\boldsymbol{y} \mid \boldsymbol{x})$ given by marginalizing over all \boldsymbol{z} valid for $(\boldsymbol{x}, \boldsymbol{y})$

CTC Training

$|\boldsymbol{x}|=T,|\boldsymbol{y}|=N$

- $p(\boldsymbol{y} \mid \boldsymbol{x})$ given by marginalizing over all \boldsymbol{z} valid for $(\boldsymbol{x}, \boldsymbol{y})$
- Given by $\pi(N, T)$ where

$$
\pi(i, t)=\text { prob that we have consumed } y_{1} \ldots y_{i} \text { from } x_{1} \ldots x_{t}
$$

CTC Training

$|\boldsymbol{x}|=T,|\boldsymbol{y}|=N$

- $p(\boldsymbol{y} \mid \boldsymbol{x})$ given by marginalizing over all \boldsymbol{z} valid for $(\boldsymbol{x}, \boldsymbol{y})$
- Given by $\pi(N, T)$ where

$$
\pi(i, t)=\text { prob that we have consumed } y_{1} \ldots y_{i} \text { from } x_{1} \ldots x_{t}
$$

- Dynamic programming

$$
\begin{array}{ll}
\pi(0,0)=1 & \\
\pi(i, 0)=0 & \forall i \geq 1 \\
\pi(0, t)=\prod_{k=1}^{t} p\left(z_{t}=\epsilon \mid \boldsymbol{x}\right) & \forall t \geq 1
\end{array}
$$

CTC Training

$|\boldsymbol{x}|=T,|\boldsymbol{y}|=N$

- $p(\boldsymbol{y} \mid \boldsymbol{x})$ given by marginalizing over all \boldsymbol{z} valid for $(\boldsymbol{x}, \boldsymbol{y})$
- Given by $\pi(N, T)$ where

$$
\pi(i, t)=\text { prob that we have consumed } y_{1} \ldots y_{i} \text { from } x_{1} \ldots x_{t}
$$

- Dynamic programming

$$
\begin{array}{rlr}
\pi(0,0) & =1 & \\
\pi(i, 0) & =0 & \forall i \geq 1 \\
\pi(0, t) & =\prod_{k=1}^{t} p\left(z_{t}=\epsilon \mid \boldsymbol{x}\right) & \forall t \geq 1 \\
& \\
\pi(i, t)= & \pi(i, t-1) p\left(z_{t}=\epsilon \mid \boldsymbol{x}\right)+\pi(i-1, t-1) p\left(z_{t}=y_{i} \mid \boldsymbol{x}\right)
\end{array}
$$

CTC Training

$$
|\boldsymbol{x}|=T,|\boldsymbol{y}|=N
$$

- $p(\boldsymbol{y} \mid \boldsymbol{x})$ given by marginalizing over all \boldsymbol{z} valid for $(\boldsymbol{x}, \boldsymbol{y})$
- Given by $\pi(N, T)$ where

$$
\pi(i, t)=\text { prob that we have consumed } y_{1} \ldots y_{i} \text { from } x_{1} \ldots x_{t}
$$

- Dynamic programming

$$
\begin{array}{rlr}
\pi(0,0) & =1 & \\
\pi(i, 0) & =0 & \forall i \geq 1 \\
\pi(0, t)=\prod_{k=1}^{t} p\left(z_{t}=\epsilon \mid \boldsymbol{x}\right) & \forall t \geq 1 \\
& \\
\pi(i, t)= & \pi(i, t-1) p\left(z_{t}=\epsilon \mid \boldsymbol{x}\right)+\pi(i-1, t-1) p\left(z_{t}=y_{i} \mid \boldsymbol{x}\right)
\end{array}
$$

- Minimize loss $-\log \pi(N, T)$.

CTC Test Time

- Given \boldsymbol{x}, we can predict $z_{1} \ldots z_{T} \in \mathcal{C} \cup\{\epsilon\}$ using the model $p\left(z_{t} \mid \boldsymbol{x}\right)$ either greedily or by beam search.

References

- CTC tutorial: https://distill.pub/2017/ctc/

