Neural Architectures for Image, Language, and Speech Processing (Cont.)

Karl Stratos

June 27, 2018

Overview

Feedforward Networks

Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTMs)

Evample: Ridirectional LSTM Network for POS

Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq

Bonus: Connectionist Temporal Classification (CTC)

General Idea

Much of machine learning: given some complicated structure \boldsymbol{x} , predict some complicated structure \boldsymbol{y}

General Idea

Much of machine learning: given some complicated structure x, predict some complicated structure y

Machine translation:

```
x=\mbox{Le programme} a été mis en application y=\mbox{And} the programme has been implemented
```

General Idea

Much of machine learning: given some complicated structure x, predict some complicated structure y

Machine translation:

```
x=\mbox{Le programme} a été mis en application y=\mbox{And} the programme has been implemented
```

Encoder-decoder models are **conditional** models that handle this wide class of problems in two steps:

- 1. **Encode** the given input x using some architecture.
- 2. **Decode** *y*, typically in a sequential manner using an RNN.

Overview

Feedforward Networks

Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq

Bonus: Connectionist Temporal Classification (CTC)

Basic Seq2Seq Framework

Model parameters

- ▶ Vector $e_x \in \mathbb{R}^d$ for every $x \in V^{\mathsf{src}}$
- $lackbox{ Vector } e_y \in \mathbb{R}^d \text{ for every } y \in V^{\mathrm{trg}} \cup \{*\}$
- ▶ Encoder RNN $\psi : \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ for V^{src}
- ▶ Decoder RNN $\phi: \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ for V^{trg}
- ▶ Feedforward $f: \mathbb{R}^{d'} \to \mathbb{R}^{|V^{\mathsf{trg}}|} + 1$

Basic Seq2Seq Framework

Model parameters

- $lackbox{ Vector } e_x \in \mathbb{R}^d ext{ for every } x \in V^{\sf src}$
- $lackbox{ Vector } e_y \in \mathbb{R}^d \text{ for every } y \in V^{\mathrm{trg}} \cup \{*\}$
- ▶ Encoder RNN $\psi : \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ for V^{src}
- ▶ Decoder RNN $\phi : \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ for V^{trg}
- ▶ Feedforward $f: \mathbb{R}^{d'} \to \mathbb{R}^{|V^{\mathsf{trg}}|} + 1$

Basic idea

- 1. Transform $x_1 \dots x_m \in V^{\text{src}}$ with ψ into some representation ξ .
- 2. Build a sequence model ϕ over V^{trg} conditioning on ξ .

Encoder

For $i = 1 \dots m$,

$$h_i^{\psi} = \psi\left(e_{x_i}, h_{i-1}^{\psi}\right)$$

Encoder

For $i = 1 \dots m$,

$$h_i^{\psi} = \psi\left(e_{x_i}, h_{i-1}^{\psi}\right)$$

$$h_{m}^{\psi} = \psi\left(e_{x_{m}}, \psi\left(e_{x_{m-1}}, \psi\left(e_{x_{m-2}}, \cdots \psi\left(e_{x_{1}}, h_{0}^{\psi}\right) \cdots\right)\right)\right)$$

Decoder

Initialize $h_0^\phi = \frac{h_m^\psi}{m}$ and $y_0 = *$.

Decoder

Initialize $h_0^{\phi} = \frac{h_m^{\psi}}{m}$ and $y_0 = *$.

For $i=1,2,\ldots$, the decoder defines a probability distribution over $V^{\mathrm{trg}} \cup \{\mathtt{STOP}\}$ as (\oplus denotes vector concatenation)

$$h_i^{\phi} = \phi\left(e_{y_{i-1}} \oplus \mathbf{h}_{\mathbf{m}}^{\psi}, \ h_{i-1}^{\phi}\right)$$

$$p_{\Theta}(y|x_1 \dots x_m, \ y_0 \dots y_{i-1}) = \operatorname{softmax}_y(f(h_i^{\phi}))$$

Decoder

Initialize $h_0^{\phi} = \frac{h_m^{\psi}}{m}$ and $y_0 = *$.

For $i=1,2,\ldots$, the decoder defines a probability distribution over $V^{\mathrm{trg}} \cup \{\mathtt{STOP}\}$ as (\oplus denotes vector concatenation)

$$h_i^{\phi} = \phi\left(e_{y_{i-1}} \oplus \mathbf{h}_{\mathbf{m}}^{\psi}, h_{i-1}^{\phi}\right)$$

$$p_{\Theta}(y|x_1 \dots x_m, y_0 \dots y_{i-1}) = \operatorname{softmax}_y(f(h_i^{\phi}))$$

Probability of translation $y_1 \dots y_n$ given $x_1 \dots x_m$:

$$p_{\Theta}(y_1 \dots y_n | x_1 \dots x_m) = \prod_{i=1}^n p_{\Theta}(y_i | x_1 \dots x_m, \ y_0 \dots y_{i-1}) \times p_{\Theta}(\text{STOP}|x_1 \dots x_m, \ y_0 \dots y_n)$$

Training

Given parallel text of N sentence-translation pairs $(x^{(1)},y^{(1)})\dots(x^{(N)},y^{(N)})$, find parameters Θ^* that maximize the log likelihood of the data:

$$\Theta^* \approx \underset{\Theta}{\operatorname{arg\,min}} - \sum_{i=1}^N \log p_{\Theta}(y^{(i)}|x^{(i)})$$

$$\underset{\text{loss}}{\underbrace{\hspace{1cm}}}$$

Greedy Translation

Given sentence $x_1 \dots x_m \in V^{\mathsf{src}}$,

1. Encode the sentence: for $i = 1 \dots m$,

$$h_i^{\psi} = \psi\left(e_{x_i}, h_{i-1}^{\psi}\right)$$

Greedy Translation

Given sentence $x_1 \dots x_m \in V^{\mathsf{src}}$,

1. Encode the sentence: for $i = 1 \dots m$,

$$h_i^{\psi} = \psi\left(e_{x_i}, h_{i-1}^{\psi}\right)$$

2. Initialize $h^{\phi} \leftarrow h_m^{\psi}$ and $S \leftarrow [*]$.

Greedy Translation

Given sentence $x_1 \dots x_m \in V^{\mathsf{src}}$,

1. Encode the sentence: for $i = 1 \dots m$,

$$h_i^{\psi} = \psi\left(e_{x_i}, h_{i-1}^{\psi}\right)$$

- 2. Initialize $h^{\phi} \leftarrow h_m^{\psi}$ and $S \leftarrow [*]$.
- 3. Keep repeating

$$\begin{split} h^{\phi} &\leftarrow \phi(e_{S[-1]} \oplus h_m^{\psi}, h^{\phi}) \\ y &\leftarrow \underset{y \in V^{\text{trg}} \cup \{\text{STOP}\}}{\operatorname{arg} \max}_{y \in V^{\text{trg}} \cup \{\text{STOP}\}} \operatorname{softmax}_y \left(f(h^{\phi}) \right) \\ S &\leftarrow S + [y] \end{split}$$

until y = STOP.

Decoder with Attention

Instead of using 1 fixed vector to encode all $x_1 \dots x_m$, decoder decides which words to pay attention to.

Decoder with Attention

- Instead of using 1 fixed vector to encode all $x_1 \dots x_m$, decoder decides which words to pay attention to.
- ▶ For i = 1, 2, ...

$$\begin{split} h_i^\phi &= \phi\left(e_{y_{i-1}} \oplus \left(\sum_{j=1}^m \alpha_{i,j} h_j^\psi\right), \ h_{i-1}^\phi\right) \\ p_\Theta(y|x_1 \dots x_m, \ y_0 \dots y_{i-1}) &= \operatorname{softmax}_y(f(h_i^\phi)) \end{split}$$

Attention Weights

$$\sum_{j=1}^{m} \alpha_{i,j} h_j^{\psi}$$

 $lacktriangleq lpha_{i,j}$: Importance of x_j for predicting i-th translation

Attention Weights

$$\sum_{j=1}^{m} \alpha_{i,j} h_{j}^{\psi}$$

- $ightharpoonup lpha_{i,j}$: Importance of x_j for predicting i-th translation
- Various options

$$\beta_{i,j} = u^{\top} \tanh \left(W h_{i-1}^{\phi} + V h_{j}^{\psi} \right)$$
$$\beta_{i,j} = \left(h_{i-1}^{\phi} \right)^{\top} h_{j}^{\psi}$$
$$\beta_{i,j} = \left(h_{i-1}^{\phi} \right)^{\top} B h_{j}^{\psi}$$

Typically take softmax to make them probabilities:

$$(\alpha_{i,1} \dots \alpha_{i,m}) = \operatorname{softmax} (\beta_{i,1} \dots \beta_{i,m})$$

Overview

Feedforward Networks Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTMs) Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq

Bonus: Connectionist Temporal Classification (CTC)

CTC in Speech

- ▶ CTC is an approach to handle the following setting.
 - Training time: given a pair of sequences (x, y) where the length of y is shorter than x.
 - ▶ Test time: must map any input sequence x to a corresponding sequence y.
- CTC treats this problem as a latent-variable model in which there is an intermediate sequence z with the same length as x from which y can be retrieved.
- Has been a dominant approach in speech recognition.
 - Alternatively, can we just use seq2seq for this problem?

Input-Latent-Output Example

$$egin{aligned} oldsymbol{x} &= x_1 \; x_2 \; x_3 \; x_4 \; x_5 \; x_6 & x_t \in \mathbb{R}^d \ oldsymbol{z} &= \mathsf{t} \; \mathsf{e} \; \mathsf{e} \; \mathsf{l} \; & z_t \in \mathcal{C} \cup \{ oldsymbol{\epsilon} \} \ oldsymbol{y} &= \mathsf{t} \; \mathsf{e} \; \mathsf{l} \; \mathsf{l} & y_i \in \mathcal{C} \end{aligned}$$

Other possible *z* sequences

```
z = \epsilon t e \mid \epsilon \mid

z = t e \mid \epsilon \in \epsilon \mid

z = t e \mid \epsilon \mid \epsilon \mid

\vdots
```

CTC Model

- ► Encode $x = x_1 \dots x_T$ into vectors $h_1 \dots h_T \in \mathbb{R}^{|\mathcal{C}|+1}$ (e.g., by CNN/RNN/CNN+RNN)
- ▶ The model defines the probability of $z_t \in \mathcal{C} \cup \{\epsilon\}$ independently of other z_l (conditioning on x) as

$$p(z_t = z | \boldsymbol{x}) = \operatorname{softmax}_z(h_t)$$

$$|\boldsymbol{x}| = T, |\boldsymbol{y}| = N$$

 $lackbox{} p(m{y}|m{x})$ given by marginalizing over all $m{z}$ valid for $(m{x},m{y})$

$$|\boldsymbol{x}| = T, |\boldsymbol{y}| = N$$

- $lacktriangledown p(m{y}|m{x})$ given by marginalizing over all $m{z}$ valid for $(m{x},m{y})$
- Given by $\pi(N,T)$ where

 $\pi(i,t) = \mathsf{prob}$ that we have consumed $y_1 \dots y_i$ from $x_1 \dots x_t$

$$|\boldsymbol{x}| = T, |\boldsymbol{y}| = N$$

- $ightharpoonup p(m{y}|m{x})$ given by marginalizing over all $m{z}$ valid for $(m{x},m{y})$
- Given by $\pi(N,T)$ where

$$\pi(i,t) = \mathsf{prob}$$
 that we have consumed $y_1 \dots y_i$ from $x_1 \dots x_t$

Dynamic programming

$$\pi(0,0) = 1$$

$$\pi(i,0) = 0 \qquad \forall i \ge 1$$

$$\pi(0,t) = \prod_{k=1}^{t} p(z_t = \epsilon | \boldsymbol{x}) \qquad \forall t \ge 1$$

$$|\boldsymbol{x}| = T, |\boldsymbol{y}| = N$$

- ightharpoonup p(y|x) given by marginalizing over all z valid for (x,y)
- Given by $\pi(N,T)$ where

$$\pi(i,t) = \mathsf{prob}$$
 that we have consumed $y_1 \dots y_i$ from $x_1 \dots x_t$

Dynamic programming

$$\pi(0,0) = 1$$

$$\pi(i,0) = 0 \qquad \forall i \ge 1$$

$$\pi(0,t) = \prod_{k=1}^{t} p(z_t = \epsilon | \boldsymbol{x}) \qquad \forall t \ge 1$$

$$\pi(i,t) = \pi(i,t-1)p(z_t = \epsilon | \boldsymbol{x}) + \pi(i-1,t-1)p(z_t = y_i | \boldsymbol{x})$$

$$|\boldsymbol{x}| = T, |\boldsymbol{y}| = N$$

- ightharpoonup p(y|x) given by marginalizing over all z valid for (x,y)
- Given by $\pi(N,T)$ where

$$\pi(i,t) = \mathsf{prob}$$
 that we have consumed $y_1 \dots y_i$ from $x_1 \dots x_t$

Dynamic programming

$$\pi(0,0) = 1$$

$$\pi(i,0) = 0 \qquad \forall i \ge 1$$

$$\pi(0,t) = \prod_{k=1}^{t} p(z_t = \epsilon | \boldsymbol{x}) \qquad \forall t \ge 1$$

$$\pi(i,t) = \pi(i,t-1)p(z_t = \epsilon | \mathbf{x}) + \pi(i-1,t-1)p(z_t = y_i | \mathbf{x})$$

▶ Minimize loss $-\log \pi(N,T)$.

CTC Test Time

▶ Given x, we can predict $z_1 ... z_T \in \mathcal{C} \cup \{\epsilon\}$ using the model $p(z_t|x)$ either greedily or by beam search.

References

► CTC tutorial: https://distill.pub/2017/ctc/