Neural Architectures for
Image, Language, and Speech Processing

Karl Stratos

June 26, 2018

1/31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTM:s)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

2/31



What's a Neural Network?

3/31



What's a Neural Network?

Just a composition of linear/nonlinear functions.

Fw) = W tanh (WED - tanh (W) - )

3/31



What's a Neural Network?

Just a composition of linear/nonlinear functions.

f(z) = W tanh (W(L_l) -+ - tanh (W(l)x) e

More like a paradigm, not a specific model.

1. Transform your input x — f(x).

2. Define loss between f(z) and the target label y.

3. Train parameters by minimizing the loss.

3/31



You've Already Seen Some Neural Networks. . .

Log-linear model is a neural network with O hidden layer and a
softmax output layer:

o EXP([Wﬁ]y)
Pl = S (Waly)

= softmax, (Wz)

Get W by minimizing L(W) = — 3. log p(yi|x:).

4/31



You've Already Seen Some Neural Networks. . .

Log-linear model is a neural network with O hidden layer and a
softmax output layer:

o eXP([Wﬁ]y)
Pl = S (Waly)

= softmax, (Wz)

Get W by minimizing L(W) = — 3. log p(yi|x:).

Linear regression is a neural network with 0 hidden layer and the
identity output layer:

f(x) =Wz

Get W by minimizing L(W) = Y, (y; — fi(2))?.

4/31



Feedforward Network

Think: log-linear with extra transformation

5/31



Feedforward Network
Think: log-linear with extra transformation
With 1 hidden layer:

A = tanh(W W)
p(y|z) = softmax, (h(V)

5/31



Feedforward Network
Think: log-linear with extra transformation
With 1 hidden layer:

A = tanh(W W)
p(y|z) = softmax, (h()

With 2 hidden layers:

A = tanh(W W z)
h?) = tanh(W @ M)
p(y|z) = softmax, (h?)

Again, get parameters W) by minimizing — > log p(yi|z;).

5/31



Feedforward Network
Think: log-linear with extra transformation
With 1 hidden layer:

A = tanh(W W)
p(y|z) = softmax, (h()

With 2 hidden layers:

A = tanh(W W z)
h?) = tanh(W @ M)
p(y|z) = softmax, (h?)

Again, get parameters W) by minimizing — > log p(yi|z;).
» Q. What's the catch?

5/31



Training = Loss Minimization
We can decrease any continuous loss by following the subgradient.

1. Differentiate the loss wrt. model parameters (backprop)
2. Take a gradient step

6/31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTM:s)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

7/31



Neural Networks are (Finite-Sample) Universal Learners!
Theorem. (Zhang et al., 2016) Give me any
1. Set of n samples S = {m(l) . ..a:(”)} C R?
2. Function f : S — R that assigns some arbitrary value f(z(®)
toeachi=1...n
Then | can specify a 1-hidden-layer feedforward network
C : S — R with 2n 4 d parameters such that C'(z(®) = f(x() for
alli=1...n.

8 /31



Neural Networks are (Finite-Sample) Universal Learners!
Theorem. (Zhang et al., 2016) Give me any
1. Set of n samples S = {m(l) . ..a:(”)} C R?
2. Function f : S — R that assigns some arbitrary value f(z(®)
toeachi=1...n
Then | can specify a 1-hidden-layer feedforward network
C : S — R with 2n 4 d parameters such that C'(z(®) = f(x() for
alli=1...n.

Proof.
Define C(z) = w'relu((a'z...a"x) + b) where w,b € R” and
a € R? are network parameters. Choose a, b so that the matrix

A; j = [max {0, a'z®) — bj}] is triangular. Solve for w in
f@W)
: = Aw
f@™)

&) 31



So Why Not Use a Simple Feedforward for Everything?

9/31



So Why Not Use a Simple Feedforward for Everything?

Computational reasons

» For example, using a GIANT feedforward to cover instances of
different sizes is clearly inefficient.

9/31



So Why Not Use a Simple Feedforward for Everything?

Computational reasons

>

For example, using a GIANT feedforward to cover instances of
different sizes is clearly inefficient.

Empirical reasons

>

>

In principle, we can learn any function.

This tells us nothing about how to get there. How many
samples do we need? How can we find the right parameters?

Specializing an architecture to a particular type of
computation allows us to incorporate inductive bias.

“Right” architecture is absolutely critical in practice.

9/31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTM:s)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

10/ 31



Image = Cube
X € RwXPxd: width w, height h, depth d (e.g., 3 RGB values)

scene from Your Name (2016))




Convolutional Neural Network (CNN)

Think: Slide various types of “filters” across image

12 /31



Convolutional Neural Network (CNN)

Think: Slide various types of “filters” across image

We say we apply a filter F? € Rf*f*d with stride s € N and
zero-padding size p € N to an image X € R¥*"*4 and obtain a
slice Z* € R *M*1 where w' = (w — f 4+ 2p)/s + 1 and

W =(h—f+2p)/s+1.

Each entry of Z% is given by a dot product between F* and the
corresponding receptive field in X (with zero-padding):

i i
Zypq = E Fope X Xitat+be

a,b,c

12 /31



Convolutional Neural Network (CNN)

Think: Slide various types of “filters” across image

We say we apply a filter F? € Rf*f*d with stride s € N and
zero-padding size p € N to an image X € R¥*"*4 and obtain a
slice Z* € R *M*1 where w' = (w — f 4+ 2p)/s + 1 and

W =(h—f+2p)/s+1.

Each entry of Z% is given by a dot product between F* and the
corresponding receptive field in X (with zero-padding):

i i
Zypq = E Fope X Xitat+be

a,b,c

We use multiple filters and stack the slices: if m filters are used,
the output is Z € R® *I'xm

12 /31



An Example ConvNet Architecture

Input: image X € Rwxhxd

» Convolutional layer: use m filters to obtain Z € R¥'>" xm

13 /31



An Example ConvNet Architecture

Input: image X € Rwxhxd

» Convolutional layer: use m filters to obtain Z € R¥'>" xm

» Relu layer: Apply element-wise relu to Z.

13 /31



An Example ConvNet Architecture

Input: image X € Rwxhxd

» Convolutional layer: use m filters to obtain Z € R¥'*/'*

» Relu layer: Apply element-wise relu to Z.

» Max pooling layer: use 2 x 2 filter with stride 2 and

appropriate zero-padding size to “downsample” Z to
Pc R /2)x (R /2)xm

m

13 /31



An Example ConvNet Architecture

Input: image X € Rwxhxd

» Convolutional layer: use m filters to obtain Z € R¥'>" xm
» Relu layer: Apply element-wise relu to Z.

» Max pooling layer: use 2 x 2 filter with stride 2 and

appropriate zero-padding size to “downsample” Z to
Pc R /2)x (R /2)xm

» Fully-connected layer: equivalent to convolutional layer with
K giant filters Q% € R@W'/2)x (R’ /2)xm

13 /31



An Example ConvNet Architecture

Input: image X € Rwxhxd
» Convolutional layer: use m filters to obtain Z € R¥'>" xm

» Relu layer: Apply element-wise relu to Z.

» Max pooling layer: use 2 x 2 filter with stride 2 and

appropriate zero-padding size to “downsample” Z to
Pc R /2)x (R /2)xm

» Fully-connected layer: equivalent to convolutional layer with
K giant filters Q% € R@W'/2)x (R’ /2)xm

Output: vector v € RI1*X ysed for -way classification of X

13 /31



In Practice, Many Such Layers

RELU RELU RELU RELU RELU RELU

CONVl CONVlCONVl CONVlCONVl FC

l

o
fruck
Eplane
ship
horse

http://cs231n.github.io/convolutional-networks

14 /31


http://cs231n.github.io/convolutional-networks

Filters Correspond to Patterns

http://cs231n.github.io/convolutional-networks

15 /31


http://cs231n.github.io/convolutional-networks

Filters at Lower Layer vs Higher Layer
Zeiler and Fergus (2013)

16 /31



Vanishing /Exploding Gradient Problem in Deep Networks

h! = Conv(Conv(Conv(Conv(Conv(--- (x)---)))))

ResNet (He et al., 2015): at each layer [,

h' = Conv(h'™")+h"""

17 /31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTM:s)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

18 /31



Language/Speech = Sequence

x1...2n € R% each x; is a d-dimensional embedding of the i-th
input
» Text: z; is a word embedding (to be also learned)

» Speech: z; is an acoustic feature vector

Two properties of this type of data
1. Length N not fixed
2. Typically processed from left to right (most of the time)

19/ 31



Recurrent Neural Network (RNN)

Think: HMM (or Kalman filter) with extra transformation

20 /31



Recurrent Neural Network (RNN)

Think: HMM (or Kalman filter) with extra transformation

Input: sequence z; ...zy € R?

» Fori=1...N,

h; = tanh (W.%Z + Vhi71)

Output: sequence hy ... hy € RY

20 /31



RNN = Deep Feedforward
Unroll the expression for the last output vector hpy:
hy = tanh <Wa:]v —|—V<~~ + V tanh <Ww1 + Vh0> >>

It's just a deep “feedforward network” with one important
difference: parameters are reused

» (V,W) are applied N times

Training: do backprop on this unrolled network, update parameters

21/31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTM:s)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

22 /31



LSTM

» RNN produces a sequence of output vectors
T1...TN — hi...hy
» LSTM produces “memory cell vectors” along with output
Ti1...TN — ¢i...cn, hi...hy

» These ¢ ...cy enable the network to keep or drop
information from previous states.

23 /31



LSTM: Details

At each time step 1,
» Compute a masking vector for the memory cell:

qi =0 (qu + thz'_1 + Wici_l) S [0, 1]dl

24 /31



LSTM: Details

At each time step 1,
» Compute a masking vector for the memory cell:

qi =0 (Uqa: + thj_l + Wici_l) S [0, 1]dl

» Use ¢; to keep/forget dimensions in previous memory cell:

ci=(1—-¢q)®c_1+q ©tanh (Uz+V°h;_1)

24 /31



LSTM: Details

At each time step 1,
» Compute a masking vector for the memory cell:

qi =0 (Uqa: + thj_l + Wici_l) S [0, 1]dl

» Use ¢; to keep/forget dimensions in previous memory cell:

ci=(1—-¢q)®c_1+q ©tanh (Uz+V°h;_1)

» Compute another masking vector for the output:

0; =0 (on + Vohqul + WOCZ') € [0, 1]d/

24 /31



LSTM: Details

At each time step 1,
» Compute a masking vector for the memory cell:

qi =0 (Uqa: + thj_l + Wici_l) S [0, 1]dl

» Use ¢; to keep/forget dimensions in previous memory cell:

ci=(1—-¢q)®c_1+q ©tanh (Uz+V°h;_1)

» Compute another masking vector for the output:

0i = o (U°x 4+ V°h_1 + W) € [0,1]7

» Use o; to keep/forget dimensions in current memory cell:

h; = 0; ® tanh(c¢;)

24 /31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models

Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

25 /31



Build Your Network

Model Parameters

v

Embedding e, for each character type ¢

2 LSTMs (forward/backward) at character level
Embedding e,, for each word type w

2 LSTMs (forward/backward) at word level
Feedforward network (U, V') at the output

v

v

v

v

the dog saw the cat

26 /31



1. Character-Level LSTMs

Forward character-level LSTM

eqeoeg — fi f5 f5 € R%
Backward character-level LSTM

eg eo eq — by b5 b§ € Rée
Get a character-aware encoding of dog;:

f3

b§ | € Rt

€dog

Tdog =

27 /31



2. Word-Level LSTMs

Forward word-level LSTM

Tthe Tdog Tsaw Tthe Tcat — fi fY i S f¥ € RY
Backward word-level LSTM

Tcat Tihe Tsaw Ldog Tthe — bY by by Y bY e RY

Get a sentence-aware encoding of dog:

R L g
“dog = bY

28 /31



3. Feedforward

The final vector hdog € R™ has dimension equal to the the
number of tag types m, computed by feedforward

hdog =V tanh(Uzdog)
Think

[hdog]N ~ score of tag N for dog

29 /31



Greedy Model

Define distribution over tags at each position as:

p(N|dog) = softmaxN(hdog)

Given tagged words (z(1), (M) .. (z(™ () minimize the loss

Zlogp D|z)

30/31



References

» CNN tutorial:
http://cs231n.github.io/convolutional-networks/

» LSTM tutorial: http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

31/31


http://cs231n.github.io/convolutional-networks/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

