
Neural Architectures for
Image, Language, and Speech Processing

Karl Stratos

June 26, 2018

1 / 31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models
Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

2 / 31



What’s a Neural Network?

Just a composition of linear/nonlinear functions.

f(x) = W (L) tanh
(
W (L−1) · · · tanh

(
W (1)x

)
· · ·
)

More like a paradigm, not a specific model.

1. Transform your input x −→ f(x).

2. Define loss between f(x) and the target label y.

3. Train parameters by minimizing the loss.
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You’ve Already Seen Some Neural Networks. . .

Log-linear model is a neural network with 0 hidden layer and a
softmax output layer:

p(y|x) :=
exp([Wx]y)∑
y′ exp([Wx]y′)

= softmaxy(Wx)

Get W by minimizing L(W ) = −
∑

i log p(yi|xi).

Linear regression is a neural network with 0 hidden layer and the
identity output layer:

f(x) := Wx

Get W by minimizing L(W ) =
∑

i(yi − fi(x))2.
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Feedforward Network

Think: log-linear with extra transformation

With 1 hidden layer:

h(1) = tanh(W (1)x)

p(y|x) = softmaxy(h(1))

With 2 hidden layers:

h(1) = tanh(W (1)x)

h(2) = tanh(W (2)h(1))

p(y|x) = softmaxy(h(2))

Again, get parameters W (l) by minimizing −
∑

i log p(yi|xi).

I Q. What’s the catch?
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Training = Loss Minimization
We can decrease any continuous loss by following the subgradient.

1. Differentiate the loss wrt. model parameters (backprop)

2. Take a gradient step
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Neural Networks are (Finite-Sample) Universal Learners!
Theorem. (Zhang et al., 2016) Give me any

1. Set of n samples S =
{
x(1) . . .x(n)

}
⊂ Rd

2. Function f : S → R that assigns some arbitrary value f(x(i))
to each i = 1 . . . n

Then I can specify a 1-hidden-layer feedforward network
C : S → R with 2n+ d parameters such that C(x(i)) = f(x(i)) for
all i = 1 . . . n.

Proof.
Define C(x) = w>relu((a>x . . .a>x) + b) where w, b ∈ Rn and
a ∈ Rd are network parameters. Choose a, b so that the matrix
Ai,j := [max

{
0,a>x(i) − bj

}
] is triangular. Solve for w inf(x(1))
...

f(x(n))

 = Aw
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So Why Not Use a Simple Feedforward for Everything?

Computational reasons

I For example, using a GIANT feedforward to cover instances of
different sizes is clearly inefficient.

Empirical reasons

I In principle, we can learn any function.

I This tells us nothing about how to get there. How many
samples do we need? How can we find the right parameters?

I Specializing an architecture to a particular type of
computation allows us to incorporate inductive bias.

I “Right” architecture is absolutely critical in practice.
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Image = Cube
X ∈ Rw×h×d: width w, height h, depth d (e.g., 3 RGB values)

(scene from Your Name (2016))
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Convolutional Neural Network (CNN)

Think: Slide various types of “filters” across image

We say we apply a filter F i ∈ Rf×f×d with stride s ∈ N and
zero-padding size p ∈ N to an image X ∈ Rw×h×d and obtain a
slice Zi ∈ Rw′×h′×1 where w′ = (w − f + 2p)/s+ 1 and
h′ = (h− f + 2p)/s+ 1.

Each entry of Zi is given by a dot product between F i and the
corresponding receptive field in X (with zero-padding):

Zi
t,t′,1 =

∑
a,b,c

F i
a,b,c ×Xt+a,t′+b,c

We use multiple filters and stack the slices: if m filters are used,
the output is Z ∈ Rw′×h′×m.

12 / 31



Convolutional Neural Network (CNN)

Think: Slide various types of “filters” across image

We say we apply a filter F i ∈ Rf×f×d with stride s ∈ N and
zero-padding size p ∈ N to an image X ∈ Rw×h×d and obtain a
slice Zi ∈ Rw′×h′×1 where w′ = (w − f + 2p)/s+ 1 and
h′ = (h− f + 2p)/s+ 1.

Each entry of Zi is given by a dot product between F i and the
corresponding receptive field in X (with zero-padding):

Zi
t,t′,1 =

∑
a,b,c

F i
a,b,c ×Xt+a,t′+b,c

We use multiple filters and stack the slices: if m filters are used,
the output is Z ∈ Rw′×h′×m.

12 / 31



Convolutional Neural Network (CNN)

Think: Slide various types of “filters” across image

We say we apply a filter F i ∈ Rf×f×d with stride s ∈ N and
zero-padding size p ∈ N to an image X ∈ Rw×h×d and obtain a
slice Zi ∈ Rw′×h′×1 where w′ = (w − f + 2p)/s+ 1 and
h′ = (h− f + 2p)/s+ 1.

Each entry of Zi is given by a dot product between F i and the
corresponding receptive field in X (with zero-padding):

Zi
t,t′,1 =

∑
a,b,c

F i
a,b,c ×Xt+a,t′+b,c

We use multiple filters and stack the slices: if m filters are used,
the output is Z ∈ Rw′×h′×m.

12 / 31



An Example ConvNet Architecture

Input: image X ∈ Rw×h×d

I Convolutional layer: use m filters to obtain Z ∈ Rw′×h′×m.

I Relu layer: Apply element-wise relu to Z.

I Max pooling layer: use 2× 2 filter with stride 2 and
appropriate zero-padding size to “downsample” Z to
P ∈ R(w′/2)×(h′/2)×m.

I Fully-connected layer: equivalent to convolutional layer with
K giant filters Qk ∈ R(w′/2)×(h′/2)×m

Output: vector v ∈ R1×1×K used for K-way classification of X
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In Practice, Many Such Layers

http://cs231n.github.io/convolutional-networks
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Filters Correspond to Patterns

http://cs231n.github.io/convolutional-networks
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Filters at Lower Layer vs Higher Layer
Zeiler and Fergus (2013)
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Vanishing/Exploding Gradient Problem in Deep Networks

hl = Conv(Conv(Conv(Conv(Conv(· · · (x) · · · )))))

ResNet (He et al., 2015): at each layer l,

hl = Conv(hl−1)+hl−1
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Language/Speech = Sequence

x1 . . . xN ∈ Rd: each xi is a d-dimensional embedding of the i-th
input

I Text: xi is a word embedding (to be also learned)

I Speech: xi is an acoustic feature vector

Two properties of this type of data

1. Length N not fixed

2. Typically processed from left to right (most of the time)
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Recurrent Neural Network (RNN)

Think: HMM (or Kalman filter) with extra transformation

Input: sequence x1 . . . xN ∈ Rd

I For i = 1 . . . N ,

hi = tanh (Wxi + V hi−1)

Output: sequence h1 . . . hN ∈ Rd′
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RNN ≈ Deep Feedforward

Unroll the expression for the last output vector hN :

hN = tanh

(
WxN + V

(
· · ·+ V tanh

(
Wx1 + V h0

)
· · ·
))

It’s just a deep “feedforward network” with one important
difference: parameters are reused

I (V,W ) are applied N times

Training: do backprop on this unrolled network, update parameters

21 / 31



Overview

Feedforward Networks
Need for Specialized Architectures

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Example: Bidirectional LSTM Network for POS Tagging

Encoder-Decoder Models
Example: RNN-Based Seq2Seq
Bonus: Connectionist Temporal Classification (CTC)

22 / 31



LSTM

I RNN produces a sequence of output vectors

x1 . . . xN −→ h1 . . . hN

I LSTM produces “memory cell vectors” along with output

x1 . . . xN −→ c1 . . . cN , h1 . . . hN

I These c1 . . . cN enable the network to keep or drop
information from previous states.
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LSTM: Details
At each time step i,

I Compute a masking vector for the memory cell:

qi = σ
(
U qx+ V qhi−1 +W ici−1

)
∈ [0, 1]d

′

I Use qi to keep/forget dimensions in previous memory cell:

ci = (1− qi)� ci−1 + qi � tanh (U cx+ V chi−1)

I Compute another masking vector for the output:

oi = σ (Uox+ V ohi−1 +W oci) ∈ [0, 1]d
′

I Use oi to keep/forget dimensions in current memory cell:

hi = oi � tanh(ci)
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Build Your Network

Model Parameters

I Embedding ec for each character type c

I 2 LSTMs (forward/backward) at character level

I Embedding ew for each word type w

I 2 LSTMs (forward/backward) at word level

I Feedforward network (U, V ) at the output

the dog saw the cat
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1. Character-Level LSTMs

Forward character-level LSTM

ed eo eg −→ f c1 f
c
2 f

c
3 ∈ Rdc

Backward character-level LSTM

eg eo ed −→ bc1 b
c
2 b

c
3 ∈ Rdc

Get a character-aware encoding of dog:

xdog =

 f c3
bc3
edog

 ∈ R2dc+dw
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2. Word-Level LSTMs

Forward word-level LSTM

xthe xdog xsaw xthe xcat −→ fw1 fw2 fw3 fw4 fw5 ∈ Rd

Backward word-level LSTM

xcat xthe xsaw xdog xthe −→ bw1 bw2 bw3 bw4 bw5 ∈ Rd

Get a sentence-aware encoding of dog:

zdog =

[
fw2
bw4

]
∈ R2d
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3. Feedforward

The final vector hdog ∈ Rm has dimension equal to the the
number of tag types m, computed by feedforward

hdog = V tanh(Uzdog)

Think

[hdog]N ≈ score of tag N for dog
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Greedy Model

Define distribution over tags at each position as:

p(N|dog) = softmaxN(hdog)

Given tagged words (x(1), y(1)) . . . (x(n), y(n)), minimize the loss

L(Θ) = −
m∑
i=1

log p(y(i)|x(i))
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References

I CNN tutorial:
http://cs231n.github.io/convolutional-networks/

I LSTM tutorial: http://colah.github.io/posts/

2015-08-Understanding-LSTMs/
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