Day 7: Optimization, regularization for NN

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

26 June 2018

Day 7: Tricks and tools for NN training

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

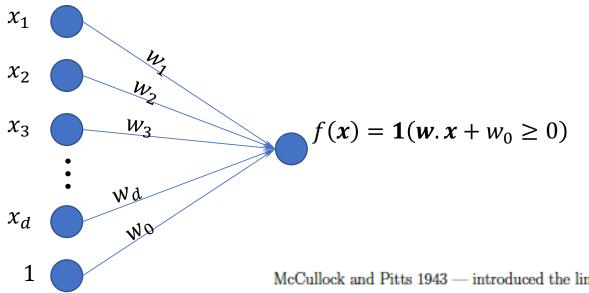
Instructor: Suriya Gunasekar, TTI Chicago

26 June 2018

Topics so far

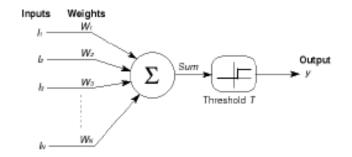
- Linear regression
- Classification
 - Logistic regression
 - Maximum margin classifiers, kernel trick
 - Generative models
- Yesterday
 - Neural networks introduction
 - Backpropagation
- Today
 - Common practices in NN training optimization and regularization
 - Special architectures CNNs, RNNs, encoder-decoder

Linear classifier

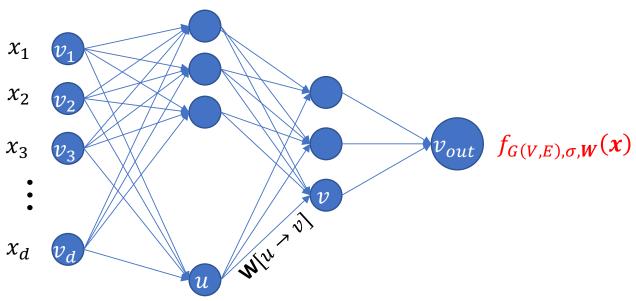


McCullock and Pitts 1943 — introduced the linear threshold "neuron".

• Biological analogy: single neuron – stimuli reinforce synaptic connections



Feed-Forward Neural Networks

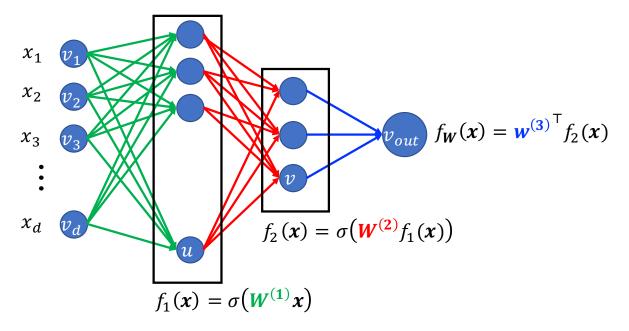


Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
 - "Input Units" $v_1 \dots v_d \in V$: no incoming edges have value $o[v_i] = x_i$
 - Each edge $u \rightarrow v$ has weight $W[u \rightarrow v]$
 - Pre-activation $a[v] = \sum_{u \to v \in E} W[u \to v] o[u]$
 - Output value $o[v] = \sigma(a[v])$
 - "Output Unit" $v_{out} \in V$, $f_W(\mathbf{x}) = a[v_{out}]$

Figure credit: Nati Srebro

Feed forward fully connected network



- L hidden layers with layer l havinb d_l hidden units
- Parameters:
 - for each intermediate layer $W^{(l)} \in \mathbb{R}^{d_{l-1} \times d_l}$ where $d_0 = d$
 - final layer weights $\boldsymbol{w}^{(\boldsymbol{L}+1)} \in \mathbb{R}^{d_L}$
- For 2-hidden layer $f_W(x) = w^{(3)^{\top}} \sigma(W^{(2)} \sigma(W^{(1)}x))$. More generally,

$$f_{\boldsymbol{W}}(\boldsymbol{x}) = \boldsymbol{w}^{(L+1)^{\mathsf{T}}} \sigma \left(\boldsymbol{W}^{(L-1)} \dots \sigma \left(\boldsymbol{W}^{(2)} \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{x} \right) \right) \right)$$

Neural networks as hypothesis class

- Hypothesis class specified by:
 - o Graph G(V,E)

Based on architecture and fixed

- $_\circ\,$ Activation function σ $_-$
- Weights **W**, with weight $\mathbf{W}[u \to v]$ for each edge $u \to v \in E$ $\mathcal{H} = \{ f_{G(V,E),\sigma,W} \mid W: E \to \mathbb{R} \}$
- Expressive power:

{ $f \mid f \ computable \ in \ time \ T$ } $\subseteq \mathcal{H}_{G(V,E),sign}$ with $|E| = O(T^2)$ $\circ \ \underline{demo}$

• Computation: empirical risk minimization

$$\widehat{\mathbf{W}} = \arg\min_{W} \sum_{i=1}^{N} \ell(f_{G(V,E),\sigma,W}(\mathbf{x}^{(i)}), y^{(i)})$$

- Highly non-convex problem, even if loss ℓ is convex
- $_{\odot}~$ Hard to minimize over even tiny neural networks are hard
 - If not supervised ML will be solved

SGD

$$\widehat{\boldsymbol{W}} = \arg\min_{\boldsymbol{W}} \sum_{i=1}^{N} \ell(f_{\boldsymbol{W}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

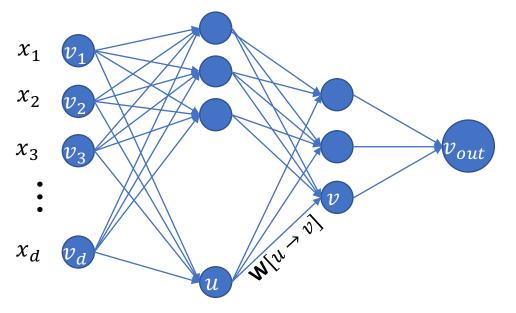
• Stochastic gradient descent: for random $(x^{(i)}, y^{(i)}) \in S$ $W^{(t+1)} \leftarrow W^{(t)} - \eta^{(t)} \nabla \ell (f_{W^{(t)}}(x^{(i)}), y^{(i)})$

(Even though its not convex)

- How to calculate $\nabla \ell(f_{W^{(t)}}(x^{(i)}), y^{(i)})$? Backpropagation \rightarrow chain rule + dynamic programming
 - Computing gradients as easy (or hard) as computing the function itself
 - What about memory?
 - Once you define gradients over simple operations, can easily compose to get complex gradients
 - Idea behind autograd

Back-Propagation

• Efficient calculation of $\nabla_W \ell(f_W(x), y)$ using chain rule



$$a[v] = \sum_{u \to v \in E} W^{(t)}[u \to v] o[u]$$
$$o[v] = \sigma(a[v])$$

$$z[v_{out}] = \ell'(a[v_{out}], y)$$
$$z[u] = \sigma'(a[u]) \sum_{u \to v} W^{(t)}[u \to v] z[v]$$

- Forward propagation: calculate activations a[v] and outputs o[v]
- Backward propagation: calculate $Z[v] \stackrel{\text{def}}{=} \frac{\partial \ell(f_W(x), y)}{\partial a[v]}$
- Gradient descent update: using $\frac{\partial \ell(f_W(x), y)}{\partial W^{(t)}[u \to v]} = z[v]o[u]$ $W^{(t+1)}[u \to v] = W^{(t+1)}[u \to v] - \eta^{(t)} \frac{\partial \ell(f_W(x), y)}{\partial W^{(t)}[u \to v]}$

Putting it All Together: SGD on Neural Networks

- Initialize $W^{(0)}$ randomly (small, but not zero)
- For t = 1, 2, ...:
 - Sample $(x^{(i)}, y^{(i)})$ (from tanning set S)
 - $_{\circ}$ Calculate the gradient $g^{(t)}$ using backpropagation
 - Forward pass: traverse the graph forward (starting from input units) and calculate activation and output values

$$a[v] = \sum_{u \to v \in E} W^{(t)}[u \to v] o[u] \quad \text{and} \quad o[v] = \sigma(a[v])$$

 Backward pass: Calculate gradients with respect to activations by scanning the graph backward starting with output note

 $z[v_{out}] = \frac{\partial \ell(a[v_{out}], y^{(i)})}{\partial a[v_{out}]} \text{ and } z[u] = \sigma'(a[u]) \sum_{u \to v \in E} W^{(t)}[u \to v] z[v]$

- Output gradients with respect to weights $g^{(t)}[u \to v] = \frac{\partial \ell(f_{W^{(t)}}(x^{(i)}), y^{(i)})}{\partial W[u \to v]} = z[v]o[u]$
- Update weights: $W^{(t+1)} = W^{(t)} \eta^{(t)} g^{(t)}$

History of Neural Networks

- 1940s-60s:
 - Inspired by learning in the brain, and as a model for the brain (Pitts, Hebb, and others)
 - Various models, directed and undirected, different activation and learning rules
- 1960-70s:
 - Perceptron Rule (Rosenblatt), Multilayer perceptron (Minksy and Papert): that many properties of images could not be determined by (single layer) perceptron. Caused a decline of activity in neural networks.
- 1970s-early 1980s:
 - Backpropagation (Werbos 1975), practical backprop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
 - Initial empirical success
- 1980s-2000s:
 - Lost favor to implicit linear methods like SVM and boosting with convex losses and convex relaxations
 - Also time when much of tools in todays deep learning is discovered –CNNs, LSTMs, etc.
- 2000-2010s:
 - revival of interest (CIFAR groups)
 - layer-wise pre-training of deep-ish nets were being trainined
 - progress in speech and vision with deep neural nets
- 2010s:
 - Computational advances (and also a few new tricks) allow training large networks
 - 2012: Krizhevsky et al. win ImageNet
 - Empirical success and renewed interest

History of Neural Networks

- 1940s-60s:
 - o Inspired by learning in the brain, and as a model for the brain (Pitts, Hebb, and others)
 - Various models, directed and undirected, different activation and learning rules
- 1960-70s:
 - Perceptron Rule (Rosenblatt), Multilayer perceptron (Minksy and Papert): that many properties of images could not be determined by (single layer) perceptron. Caused a decline of activity in neural networks.
- 1970s-early 1980s:
 - Backpropagation (Werbos 1975), practical backprop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
 - Initial empirical success
- 1980s-2000s:
 - o Lost favor to implicit linear methods like SVM and boosting with convex losses and convex relaxations
 - Also time when much of tools in todays deep learning is discovered –CNNs, LSTMs, etc.
- 2000-2010s:
 - revival of interest (CIFAR groups)
 - layer-wise pre-training of deep-ish nets were being trainined
 - $_{\circ}$ $\,$ $\,$ progress in speech and vision with deep neural nets
- 2010s:
 - Computational advances (and also a few new tricks) allow training large networks
 - 2012: Krizhevsky et al. win ImageNet
 - Empirical success and renewed interest

So what changed?

Large datasets

- Computer vision: classification datasets →CIFAR ~60K images, ImageNet ~14M images, ~1M annotations!
 - similarly large datasets for other vision tasks like segmentation, detection etc.
- o Game playing: Go, Chess → can simulate as much data as allowed by compute power
- NLP and speech (ask Karl, I don't know!)
- Other domains again data collection and storage is much cheaper

Advances in computation

- Advancement in GPU technology,
- $_{\circ}~$ SGD training on GPUs for #weights \approx #samples $\approx 10^{7} \sim 10^{9}$ or more
- Optimization technology: momentum, AdaGrad, normalization
- What's constant since the 50s: training runtime is about 10-14 days!

• Other tools/tricks

- Non-saturating activation: $\sigma(z) = [z]_+ = ReLU(z) = max(0, z)$
- Newish regularization techniques like dropout
- Pre-training leading to efficient transfer learning

Optimization

Neural network training

$$\widehat{\boldsymbol{W}} = \arg\min_{\boldsymbol{W}} \sum_{i=1}^{N} \ell(f_{\boldsymbol{W}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

• Stochastic gradient descent: for random $(\mathbf{x}^{(i)}, y^{(i)}) \in S$ $W^{(t+1)} \leftarrow W^{(t)} - \eta^{(t)} \nabla \ell(f_{W^{(t)}}(\mathbf{x}^{(i)}), y^{(i)})$

(Even though its not convex)

- Use backprop to calculate $\nabla \ell(f_{W^{(t)}}(x^{(i)}), y^{(i)})!$
- What could go wrong?
- What are the other options?

SGD common pitfalls

- For some random sample (x, y), you write a program to compute $\nabla_W \ell(f_W(x), y)!$
- What is the first mistake that can happen?

Gradient computation

- For some random sample (x, y), you write a program to compute $\nabla_W \ell(f_W(x), y)!$
- What is the first mistake that can happen?
 - Wrong gradient program!
 - How to fix/avoid?
 - Write a numerical gradient checker (hopefully without bugs). Recall $\nabla_w f(w)[i] = \frac{\partial f(w)}{\partial w_i} = \lim_{\delta \to 0} \frac{f(w + \delta e_i) - f(w)}{\delta} = \lim_{\delta \to 0} \frac{f(w + \delta e_i) - f(w - \delta e_i)}{2\delta}$
 - GradCheck $(f, \operatorname{grad}_f, w)$:
 - $g_{\operatorname{grad}_f} = \operatorname{grad}_f(w)$
 - for *i* = 1,2, ...

$$\Box g_{numeric}[i] = \frac{f(w+\delta e_i) - f(w-\delta e_i)}{2\delta}$$

Good idea to add whenever you program gradient computation manually

• if $la.norm\left(g_{\text{grad}_f}[i] - g_{numeric}[i]\right) > \epsilon$: error

SGD common pitfalls

- For some random sample (x, y), you write a program to compute $\nabla_W \ell(f_W(x), y)!$
- What is the first mistake that can happen?

 $_{\circ}$ Wrong gradient program! \rightarrow Write a numerical gradient checker

- Less obvious mistake! What is the order of samples we get in SGD?
 - Does it matter? Can't we just cycle through the data?
 - What happens if all the cats are stored first and then all the dogs?
 - ∘ Ideally: Use fresh sample at each iteration $(x, y) \sim D$
 - In practice, we have to reuse samples from training set

SGD common pitfalls

- For some random sample (x, y), you write a program to compute $\nabla_W \ell(f_W(x), y)!$
- What is the first mistake that can happen?
 - Wrong gradient program! \rightarrow Write a numerical gradient checker
- Less obvious mistake! What is the order of samples we get in SGD?
 - o Does it matter? Can't we just cycle through the data?
 - What happens if all the cats are stored first and then all the dogs?
 - ∘ Ideally: Use fresh sample at each iteration $(x, y) \sim D$
 - In practice, we have to reuse samples from training set
 - Ok! Can we just sample independently at each iteration (with replacement)?
 - Better: sample without replacements, but remember to randomly permute then cycle
 - Best: for each pass over data ("epoch"), use different random order

Optimization

- Common problems arising from models
 - Gradient clipping
 - Gradient explosion
- SGD "knobs" in NN training
 - Initialization
 - $_{\circ}$ Step-size
 - SGD variants
 - Momentum for SGD
 - Adaptive variants of SGD
 - Mini-batch SGD
 - Batch normalization

Back-Propagation

• Efficient calculation of $\nabla_W \ell(f_W(x), y)$ using chain

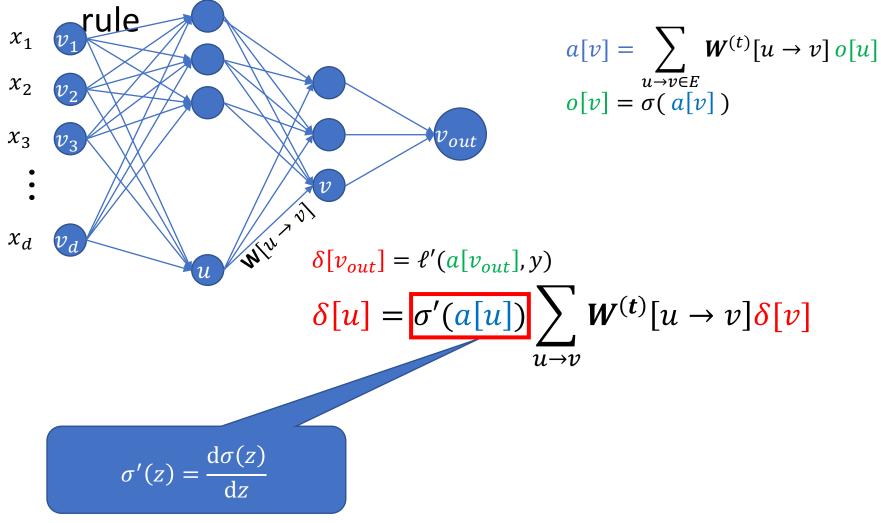
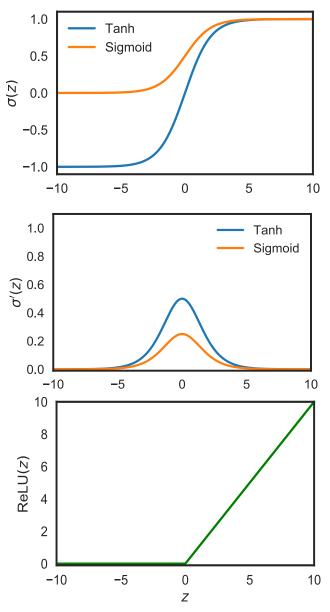


Figure credit: Nati Srebro

Activation functions

- Sigmoid $\sigma(z) = \frac{1}{1 + \exp(-z)}$
- Tanh $\sigma(z) = \frac{1 \exp(-z)}{1 + \exp(-z)}$
 - The good:
 - squash outputs to a fixed range
 - no gradient explosion from repeatedly multiplying W^(l)
 - \circ The bad
 - gradient σ'(z) is nearly zero for most values of z
- ReLU $\sigma(z) = \max(0, z)$
 - Avoids gradient saturation (in part), but can lead to gradient explosion in some architectures (e.g., RNNs)
 - Gradient clipping $g^{(t)} = \max(g^{(t)}, G_{\max})$



Activation functions

- If during SGD updates, a ReLU unit gets to a state where for all data points, the activations is 0, then the unit never recovers from 0 gradient
- Some variants of ReLU
 - Leaky ReLU: $\sigma(z) = \max(\alpha z, z)$ where $\alpha > 1$

◦ Exponential ReLU $\sigma(z) = \begin{cases} z & \text{if } z ≥ 0 \\ \alpha(\exp(z) - 1) & \text{if } z < 0 \end{cases}$

Optimization

- Common problems arising from models
 - Gradient clipping
 - Gradient explosion

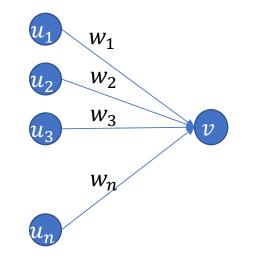
SGD "knobs" in NN training

- $_{\circ}$ Initialization
- Step size/learning rate
- SGD variants
 - Momentum for SGD
 - Adaptive variants of SGD
- Mini-batch SGD
- Batch normalization

Knob 1: Initialization

Non-convex objective: initialization plays a crucial role

- Can we initialize all weights to 0?
- Random initialization: Initialize all weights with small random real numbers, e.g., Gaussian with mean zero, $\mathcal{N}(0,0.01)$
 - $_{\circ}$ Consider a node v with n incoming weights w_i
 - Assume parent nodes are also mean zero.
 What is variance of activation a[v] at node v with incoming weights w_i ~ N(0,0.01)?



 $var(a[v]) = var(\sum_{i} w_{i} u_{i}) =$ #parents.var(u_{i})var(w_{i})

Knob 1: Initialization

- Xavier initialization: scale the std-dev to normalize the variance in each node
 - if node v has n incoming weights,
 each incoming weight gets
 random initialization of $\mathcal{N}(0, \sigma^2/n)$
 - This assumes parent nodes are zero mean
 - what values can parent nodes take after activation? u_n $o[u] = \sigma(a[u])$
 - was proposed for zero mean activations: not satisfied by ReLUs
- Kaiming initialization: specifically for ReLUs.
 - On avg. we will have half of the units active, so initialize incoming weights of node v with $\mathcal{N}(0, 2\sigma^2/n)$

12

 W_1

 W_2

 W_3

 W_n

 u_{z}

Knob 2: Step size/learning rate

Learning rate/step η_t size is the most important parameter to tune

• Theory from convex optimization: for SGD decay the learning rate with $t \text{ as} \approx \frac{1}{C+t} \rightarrow$ Use only as heuristic – does not extent for non-convex function

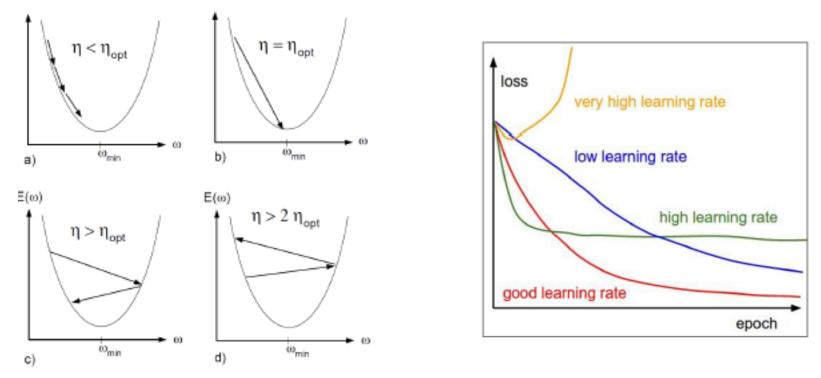


Figure credit: Lecun et al. (1996), Andrej Karpathy, Greg Shaknarovich

Knob 2: Step size/learning rate

Learning rate/step size η_t is the most important parameter to tune

• In practice: some degree of babysitting

- $_{\circ}\,$ start with a reasonable step size, $\eta_t=0.01\,$
- $_{\circ}$ monitor validation/training loss
- $_{\circ}~~{\rm drop}~\eta_t$ (typically 1/10) when learning appears stuck

• Tips

- wait a bit before dropping;
- If monitoring training loss,
 - calculating loss on full dataset can be expensive
 - instead use moving average from SGD iterations
- $_\circ\,$ Crashes due to NaNs etc. often due to η_t

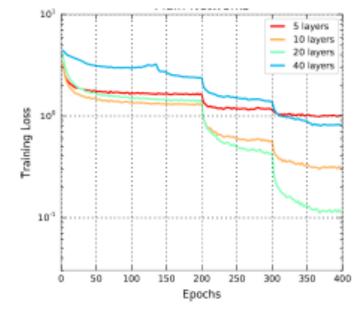


Figure credit: Larson et al.

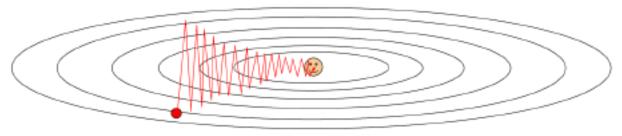
Knob 3: Variants of SGD

$$\widehat{\boldsymbol{W}} = \arg\min_{\boldsymbol{W}} \sum_{i=1}^{N} \ell(f_{\boldsymbol{W}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

- Stochastic gradient descent: for random $(\mathbf{x}^{(i)}, y^{(i)}) \in S$ $W^{(t+1)} \leftarrow W^{(t)} - \eta^{(t)} \nabla \ell(f_{W^{(t)}}(\mathbf{x}^{(i)}), y^{(i)})$
- optim.SGD(model.parameters(), lr = 0.01)
- Two variants of SGD are commonly used:
 - Momentum
 - optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
 - Adaptive step sizes
 - Adagrad: optim.Adagrad(model.parameters(), lr = 0.01)
 - Adam: optim.Adam(params, Ir=0.001, betas=(0.9, 0.999))

Knob 3a: Momentum for SGD

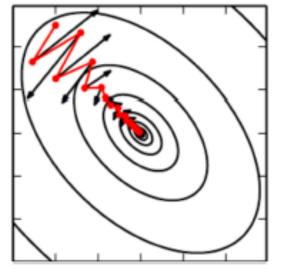
- S(GD) have trouble navigating areas where the curvature is steeper in one dimension than the other
 - ends up oscillating around the slopes and makes slow progress



• Fix: Momentum term

$$W^{(t+1)} = W^{(t)} - \eta^{(t)} \nabla \ell(f_W(x), y) + \gamma^{(t)} (W^{(t)} - W^{(t-1)})$$

- reduces updates along directions that change gradients frequently
- increases updates along directions where the gradients are consistent
- dampens oscillations



[Goodfellow et al]

Figure credit: Andrej Karpathy, Greg Shaknarovich

Knob 3b: Adaptive step sizes

$$\boldsymbol{W}^{(t+1)}[\boldsymbol{u} \to \boldsymbol{v}] = \boldsymbol{W}^{(t)}[\boldsymbol{u} \to \boldsymbol{v}] - \boldsymbol{\eta}_t \boldsymbol{g}^{(t)}[\boldsymbol{u} \to \boldsymbol{v}]$$

• All weights have same learning rate

AdaGrad: Reduce learning rate proportional to updates.

$$\boldsymbol{s^{(t)}[u \to v]} = \boldsymbol{s^{(t-1)}[u \to v]} + \left(\boldsymbol{g^{(t)}[u \to v]}\right)^2$$

$$W^{(t+1)}[u \to v] = W^{(t)} - \frac{\eta_t}{\sqrt{s^{(t)}[u \to v]} + \epsilon} g^{(t)}[u \to v]$$

• Rarely used, reduces learning rate too aggressively

RMSprop: Adagrad + forgetting

$$\boldsymbol{s^{(t)}}[u \to v] = \delta \boldsymbol{s^{(t-1)}}[u \to v] + (1 - \delta) (\boldsymbol{g^{(t)}}[u \to v])^2$$

$$W^{(t+1)}[u \to v] = W^{(t)} - \frac{\eta_t}{\sqrt{s^{(t)}[u \to v]} + \epsilon} g^{(t)}[u \to v]$$

Knob 3b: Adaptive step sizes

$$\boldsymbol{W}^{(t+1)}[\boldsymbol{u} \to \boldsymbol{v}] = \boldsymbol{W}^{(t)} - \boldsymbol{\eta}_t \boldsymbol{g}^{(t)}[\boldsymbol{u} \to \boldsymbol{v}]$$

Adam: RMSprop with momentum

$$m^{(t)}[u \to v] = \beta_1 m^{(t-1)}[u \to v] + (1 - \beta_1) g^{(t)}[u \to v]$$
$$s^{(t)}[u \to v] = \beta_2 s^{(t-1)}[u \to v] + (1 - \beta_2) (g^{(t)}[u \to v])^2$$

$$W^{(t+1)}[u \to v] = W^{(t)} - \frac{\eta_t}{\sqrt{s^{(t)}[u \to v]} + \epsilon} m^{(t)}[u \to v]$$

- Most commonly used adaptive method.
 - o optim.Adam(params, lr=0.001, betas=(0.9, 0.999))
- Good first step:
 - Pick one of (SGD+momentum) or (Adam)

Knob 4: Mini-batches

- Instead of using a single example to obtain gradient estimate, use multiple examples:
- Pick m examples $B^{(t)} = \left\{ i_1^{(t)}, i_2^{(t)}, \dots, i_m^{(t)} \right\}$ randomly

$$g^{(t)} = \frac{1}{m} \sum_{i \in B^{(t)}} \nabla_{w} \ell(f_{W^{(t)}}(x^{(i)}), y^{(i)})$$

③ At each iteration: better gradient estimate, better (more accurate) update step

 $\ensuremath{\mathfrak{S}}$ But at the cost of m backprops per update

Allows parallelization, pipelining, efficient memory access

Knob 5: (Mini)Batch Normalization

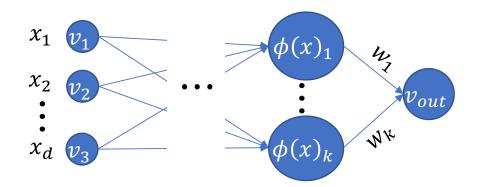
$$o[v] = \sigma \left(c_v \frac{\left(a[v] - \widehat{\mathbb{E}}[a[v]] \right)}{\sqrt{\operatorname{Var}[a[v]]}} + b_v \right)$$
Calculated on minibatch

- Different parametrization of same function class
- SGD (or AdaGrad or ADAM) on $\{W, \{c_v\}, \{b_v\}\}$
- Greatly helps with optimization in practice

Bonus knob: warm start/pre-training

- Suppose we want to continue training for more epochs

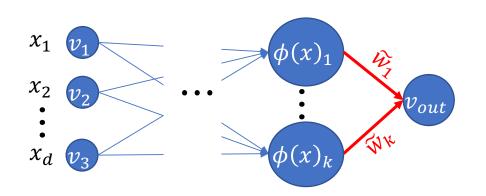
 save snapshots of weights and resume again
 need to carefully initialize learning rate now
- Also, can use weights pre-trained from another task as initialization for fine tuning a new task
 - e.g, take features from network trained for imagenet image classification and just change the last layer for new task



Bonus knob: warm start/pre-training

- Suppose we want to continue training for more epochs

 save snapshots of weights and resume again
 need to carefully initialize learning rate now
- Also, can use weights pre-trained from another task as initialization for fine tuning a new task
 - e.g, take features from network trained for imagenet image classification and just change the last layer for new task



Be careful with step size/learning rate

Neural Network Optimization

- Main technique: Stochastic Gradient Descent
- Back propagation: allows calculating gradients efficiently
- No guarantees: not convex, can take a long time, but:
 Often still works fine, finds a good local minimum
- Over parameterization: it *seems* that using LARGE network (sometimes with #weights>>#sameples) helps optimization
 - o Remember lecture 2, where doing this was a bad idea!!
 - $_{\circ}$ Not well understood

Optimization

- Check
 - Add gradCheck()
 - Randomly permute data for SGD sequence
- Choose activations to avoid
 - Gradient clipping
 - Gradient explosion
- SGD "knobs" in NN training
 - Initialization → Kaiming/Xavier, or warm start initialization
 - $_{\circ}$ Step size/learning rate \rightarrow very important to tune based on training/validation loss
 - SGD variants
 - Momentum for SGD → usually added with SGD (default parameter momentum=0.9 often works well)
 - Adaptive variants of SGD \rightarrow common alternative to SGD+momentum is Adam with $\beta_2 \gg \beta_1$, e. g., $\beta_2 = 0.999$, $\beta_1 = 0.9$
 - ∘ Mini-batch SGD \rightarrow ~128 common
 - Batch normalization
 → use batch normalization

Regularization

Using "Too Large" Networks

- It seems that using LARGE network helps optimization.
- Typically, #weight $\approx \geq$ sample size
 - Good generalization even without regularization
 - Not well understood

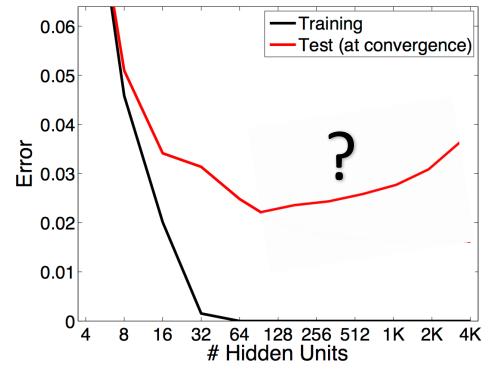
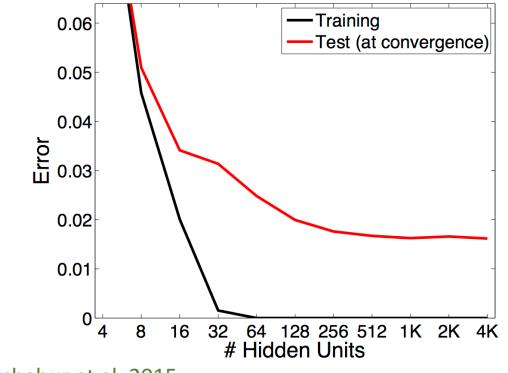


Figure credit: Behnam Neyshabur and Nati Srebro

Using "Too Large" Networks

- It seems that using LARGE network helps optimization.
- Typically, #weight $\approx \geq$ sample size
 - Good generalization even without regularization
 - Not well understood



Figures from Neyshabur et al. 2015

Regularization

- It seems that using LARGE networks helps optimization.
- Typically, #weight ≈≥ sample size
 - Good generalization even without regularization
 - Not well understood
- Still some regularization techniques are commonly used
 - Weight decay
 - Dropout
 - Data augmentation

Regularization - ℓ_2 (weight decay)

• Minimize Regularized ERM

$$\arg\min_{\boldsymbol{W}} L_{S}(f_{\boldsymbol{W}}) + \frac{\lambda}{2} \|\boldsymbol{W}\|^{2}$$

- Backpropagation is the same
 - o <u>objective:</u>

$$\frac{1}{N}\sum_{i}\left(\ell\left(f_{W}(\boldsymbol{x}^{(i)}), y^{(i)}\right) + \frac{\lambda}{2}\|\boldsymbol{W}\|^{2}\right)$$

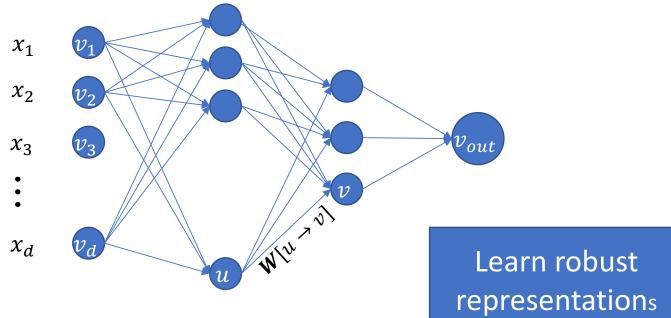
gradient estimate:

$$\ell(f_{W^{(t)}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)}) + \lambda W^{(t)} = \boldsymbol{g}^{(t)} + \lambda W^{(t)}$$

o <u>updates:</u>

 $\boldsymbol{W}^{(t+1)} = \boldsymbol{W}^{(t)} - \eta_t \cdot \left(\boldsymbol{g}^{(t)} + \lambda \boldsymbol{W}^{(t)}\right) = (1 - \eta_t \lambda) \boldsymbol{W}^{(t)} - \eta_t \boldsymbol{g}^{(t)}$

Dropouts

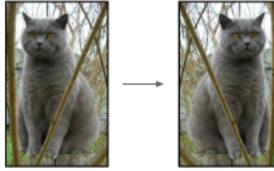


- At each step of SGD:
 - Randomly (temporarily) remove *p* fraction of the units
 - Keep weights between remaining units
 - Update weights between remaining units using backprop (as if removed units don't exist)
- For prediction:
 - Use all units and weights

Slide credit: Nati Srebro

Data augmentation

- Augment training data with invariances we know exists for task
 - $_{\circ}\,$ e.g., image classification
 - translation invariance
 - horizontal invariance
 - rotation invariance (some cases)
 - scale invariance
- Augment training data to have noise/other artifacts in feature space
 - $_{\circ}\,$ e.g., color jitter, random noise
- Super effective in many computer vision tasks



Summary

Optimization

- Check
 - Add gradCheck()
 - Randomly permute data for SGD sequence
- Choose activations to avoid
 - Gradient clipping
 - Gradient explosion
- SGD "knobs" in NN training
 - Initialization → Kaiming/Xavier, or warm start initialization
 - $_{\circ}$ Step size/learning rate \rightarrow very important to tune based on training/validation loss
 - SGD variants
 - Momentum for SGD → usually added with SGD (default parameter momentum=0.9 often works well)
 - Adaptive variants of SGD \rightarrow common alternative to SGD+momentum is Adam with $\beta_2 \gg \beta_1$, e. g., $\beta_2 = 0.999$, $\beta_1 = 0.9$
 - Mini-batch SGD $\rightarrow \sim 128$ common
 - Batch normalization
 → use batch normalization

Regularization

Data augmentation – very effective

Think of what is the right data augmentation for your problem

- Weight decay tune step sizes/ λ parameter
- Dropout usually very useful
- Choice of architecture affects validation performance/generalization!
 - why?
- Many optimization choices affect validation performance—unlike convex optimization problems with a unique global minimum, where optimization algorithm only changes the speed/computation of training and not generalization → Not well understood
 - Keep in mind while making choices in previous slides