Backpropagation

Karl Stratos

June 25, 2018

Review/Setup

- A model is a function f_{θ} defined by a set of parameters θ that receives an input \boldsymbol{x} and outputs some value.
- For example, a logistic regressor is parameterized by a single vector $\theta=\{\boldsymbol{w}\}$ and defines

$$
f_{\boldsymbol{w}}(\boldsymbol{x}):=\frac{1}{1+\exp \left(-\boldsymbol{w}^{\top} \boldsymbol{x}\right)} \in[0,1]
$$

which represents the probability of "on" for the given input \boldsymbol{x}.

Review/Setup

- A model is a function f_{θ} defined by a set of parameters θ that receives an input \boldsymbol{x} and outputs some value.
- For example, a logistic regressor is parameterized by a single vector $\theta=\{\boldsymbol{w}\}$ and defines

$$
f_{\boldsymbol{w}}(\boldsymbol{x}):=\frac{1}{1+\exp \left(-\boldsymbol{w}^{\top} \boldsymbol{x}\right)} \in[0,1]
$$

which represents the probability of "on" for the given input \boldsymbol{x}.

- The model is trained by minimizing some average loss $J_{S}(\theta)$ on training data S (e.g., the log loss for logistic regression).

Review/Setup

- A model is a function f_{θ} defined by a set of parameters θ that receives an input \boldsymbol{x} and outputs some value.
- For example, a logistic regressor is parameterized by a single vector $\theta=\{\boldsymbol{w}\}$ and defines

$$
f_{\boldsymbol{w}}(\boldsymbol{x}):=\frac{1}{1+\exp \left(-\boldsymbol{w}^{\top} \boldsymbol{x}\right)} \in[0,1]
$$

which represents the probability of "on" for the given input \boldsymbol{x}.

- The model is trained by minimizing some average loss $J_{S}(\theta)$ on training data S (e.g., the log loss for logistic regression).
- If $J_{S}(\theta)$ is differentiable, we can use stochastic gradient descent (SGD) to efficiently minimize the loss.

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random "mini-batch" $B \subset S$ of your training data.

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random "mini-batch" $B \subset S$ of your training data.
2. Define a "partial" loss function $J_{B}(\theta)$ on this mini-batch.

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random "mini-batch" $B \subset S$ of your training data.
2. Define a "partial" loss function $J_{B}(\theta)$ on this mini-batch.
3. Calculate the gradient of $J_{B}(\theta)$ (with respect to θ)

$$
\nabla J_{B}(\theta)
$$

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random "mini-batch" $B \subset S$ of your training data.
2. Define a "partial" loss function $J_{B}(\theta)$ on this mini-batch.
3. Calculate the gradient of $J_{B}(\theta)$ (with respect to θ)

$$
\nabla J_{B}(\theta)
$$

4. Update the parameter value

$$
\theta \leftarrow \theta-\eta \nabla J_{B}(\theta)
$$

Calculating the Gradient

- Implication: we can optimize any (differentiable) average loss function by SGD if we can calculate the gradient of the scalar-valued loss function $J_{B}(\theta) \in \mathbb{R}$ on any batch B with respect to parameter θ.

Calculating the Gradient

- Implication: we can optimize any (differentiable) average loss function by SGD if we can calculate the gradient of the scalar-valued loss function $J_{B}(\theta) \in \mathbb{R}$ on any batch B with respect to parameter θ.
- For simple models, we can manually specify the gradient. For example, we derived the gradient of the log loss

$$
\nabla J_{B}^{\mathrm{LOG}}(\boldsymbol{w})=\frac{1}{|B|} \sum_{(\boldsymbol{x}, y) \in B}\left(y-f_{\boldsymbol{w}}(\boldsymbol{x})\right) \boldsymbol{x} \in \mathbb{R}^{d}
$$

and calculated this vector on batch B to update the parameter $\boldsymbol{w} \in \mathbb{R}^{d}$.

Problems with Manually Deriving Gradient Formula?

Problems with Manually Deriving Gradient Formula?

- It is specific to a particular loss function.
- For a new loss function, you have to derive its gradient again.

Problems with Manually Deriving Gradient Formula?

- It is specific to a particular loss function.
- For a new loss function, you have to derive its gradient again.
- What if loss $J_{B}(\theta)$ is an extremely complicated function of θ ?
- It is technically possible to manually derive a gradient formula, but it is tedious/difficult/error-prone.

Backpropagation: Input and Output

- A technique to automatically calculate $\nabla J_{B}(\theta)$ for any definition of scalar-valued loss function $J_{B}(\theta) \in \mathbb{R}$.

Input: loss function $J_{B}(\theta) \in \mathbb{R}$, parameter value $\hat{\theta}$ Output: $\nabla J_{B}(\hat{\theta})$, the gradient of $J_{B}(\theta)$ at $\theta=\hat{\theta}$

Backpropagation: Input and Output

- A technique to automatically calculate $\nabla J_{B}(\theta)$ for any definition of scalar-valued loss function $J_{B}(\theta) \in \mathbb{R}$.

Input: loss function $J_{B}(\theta) \in \mathbb{R}$, parameter value $\hat{\theta}$ Output: $\nabla J_{B}(\hat{\theta})$, the gradient of $J_{B}(\theta)$ at $\theta=\hat{\theta}$

- For example, when applied to the $\log \operatorname{loss} J_{B}^{\mathrm{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}$ at some parameter $\hat{\boldsymbol{w}} \in \mathbb{R}^{d}$, it calculates $\nabla J_{B}^{\mathrm{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}^{d}$ without needing an explicit gradient formula.

Backpropagation: Input and Output

- A technique to automatically calculate $\nabla J_{B}(\theta)$ for any definition of scalar-valued loss function $J_{B}(\theta) \in \mathbb{R}$.

Input: loss function $J_{B}(\theta) \in \mathbb{R}$, parameter value $\hat{\theta}$ Output: $\nabla J_{B}(\hat{\theta})$, the gradient of $J_{B}(\theta)$ at $\theta=\hat{\theta}$

- For example, when applied to the log loss $J_{B}^{\mathrm{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}$ at some parameter $\hat{\boldsymbol{w}} \in \mathbb{R}^{d}$, it calculates $\nabla J_{B}^{\mathrm{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}^{d}$ without needing an explicit gradient formula.
- More generally, it can calculate the gradient of an arbitrarily complicated (differentiable) function of parameter θ.

Including neural networks

Overview

Calculus Warm-Up
 Directed Acyclic Graph (DAG)
 Backpropagation
 Computation Graph, Forward Pass Backpropagation

Notation

- For the most part, we will consider (differentiable) function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a single 1-dimensional parameter $x \in \mathbb{R}$.
- The gradient/derivative of f is a function of x and written as

$$
\frac{\partial f(x)}{\partial x}: \mathbb{R} \rightarrow \mathbb{R}
$$

- The value of the gradient of f with respect to x at $x=a$ is written as

$$
\left.\frac{\partial f(x)}{\partial x}\right|_{x=a} \in \mathbb{R}
$$

Chain Rule

- Given any differentiable functions f, g from \mathbb{R} to \mathbb{R},

$$
\begin{aligned}
& \frac{\partial g(f(x))}{\partial x} \\
& =\frac{\partial g(f(x))}{\partial f(x)} \times \underbrace{\frac{\partial f(x)}{\partial x}}_{\text {easy to calculate }}
\end{aligned}
$$

Exercises

At $x=42$,

- What is the value of the gradient of $f(x):=7$?
- What is the value of the gradient of $f(x):=2 x$?
- What is the value of the gradient of $f(x):=2 x+99999$?
- What is the value of the gradient of $f(x):=x^{3}$?
- What is the value of the gradient of $f(x):=\exp (x)$?
- What is the value of the gradient of $f(x):=\exp \left(2 x^{3}+10\right)$?
- What is the value of the gradient of

$$
f(x):=\log \left(\exp \left(2 x^{3}+10\right)\right)
$$

Chain Rule for a Function of Multiple Input Variables

- Let $f_{1} \ldots f_{m}$ denote any differentiable functions from \mathbb{R} to \mathbb{R}.
- If $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a differentiable function from \mathbb{R}^{m} to \mathbb{R},

$$
\begin{aligned}
& \frac{\partial g\left(f_{1}(x), \ldots, f_{m}(x)\right)}{\partial x} \\
& =\sum_{i=1}^{m} \frac{\partial g\left(f_{1}(x), \ldots, f_{m}(x)\right)}{\partial f_{i}(x)} \times \underbrace{\frac{\partial f_{i}(x)}{\partial x}}_{\text {easy to calculate }}
\end{aligned}
$$

- Calculate the gradient of $x+x^{2}+y x$ with respect to x using the chain rule.

Overview

Calculus Warm-Up
 Directed Acyclic Graph (DAG)
 Backpropagation
 Computation Graph, Forward Pass Backpropagation

DAG

A directed acylic graph (DAG) is a directed graph $G=(V, A)$ with a topological ordering: a sequence π of V such that for every $\operatorname{arc}(i, j) \in A, i$ comes before j in π.

For backpropagation: usually assume have many roots and 1 leaf

Notation

$$
\begin{aligned}
V & =\{1,2,3,4,5,6\} \\
V_{I} & =\{1,2\} \\
V_{N} & =\{3,4,5,6\} \\
A & =\{(1,3),(1,5),(2,4),(3,4),(4,6),(5,6)\} \\
\mathbf{p a}(4) & =\{2,3\} \\
\operatorname{ch}(1) & =\{3,5\} \\
\Pi_{G} & =\{(1,2,3,4,5,6),(2,1,3,4,5,6)\}
\end{aligned}
$$

Overview

Calculus Warm-Up
 Directed Acyclic Graph (DAG)
 Backpropagation
 Computation Graph, Forward Pass
 Backpropagation

Computation Graph

- DAG $G=(V, E)$ with a single output node $\omega \in V$.
- Every node $i \in V$ is equipped with a value $x^{i} \in \mathbb{R}$:

1. For input node $i \in V_{I}$, we assume $x^{i}=a^{i}$ is given.
2. For non-input node $i \in V_{N}$, we assume a differentiable function $f^{i}: \mathbb{R}^{|\mathbf{p a}(i)|} \rightarrow \mathbb{R}$ and compute

$$
x^{i}=f^{i}\left(\left(x^{j}\right)_{j \in \mathbf{p a}(i)}\right)
$$

Computation Graph

- DAG $G=(V, E)$ with a single output node $\omega \in V$.
- Every node $i \in V$ is equipped with a value $x^{i} \in \mathbb{R}$:

1. For input node $i \in V_{I}$, we assume $x^{i}=a^{i}$ is given.
2. For non-input node $i \in V_{N}$, we assume a differentiable function $f^{i}: \mathbb{R}^{|\mathbf{p a}(i)|} \rightarrow \mathbb{R}$ and compute

$$
x^{i}=f^{i}\left(\left(x^{j}\right)_{j \in \mathbf{p a}(i)}\right)
$$

- Thus G represents a function: it receives multiple values $x^{i}=a^{i}$ for $i \in V_{I}$ and calculates a scalar $x^{\omega} \in \mathbb{R}$.
- We can calculate x^{ω} by a forward pass.

Forward Pass

Input: computation graph $G=(V, A)$ with output node $\omega \in V$ Result: populates $x^{i}=a^{i}$ for every $i \in V$

1. Pick some topological ordering π of V.
2. For i in order of π, if $i \in V_{N}$ is a non-input node, set

$$
x^{i} \leftarrow a^{i}:=f^{i}\left(\left(a^{j}\right)_{j \in \mathbf{p a}(i)}\right)
$$

Why do we need a topological ordering?

Exercise

Construct the computation graph associated with the function

$$
f(x, y):=(x+y) x y^{2}
$$

Compute its output value at $x=1$ and $y=2$ by performing a forward pass.

Overview

Calculus Warm-Up
Directed Acyclic Graph (DAG)
Backpropagation
Computation Graph, Forward Pass Backpropagation

For Notational Convenience. . .

- Collectively refer to all input slots by $x_{I}=\left(x^{i}\right)_{i \in V_{I}}$.
- Collectively refer to all input values by $a_{I}=\left(a^{i}\right)_{i \in V_{I}}$.

For Notational Convenience. . .

- Collectively refer to all input slots by $x_{I}=\left(x^{i}\right)_{i \in V_{I}}$.
- Collectively refer to all input values by $a_{I}=\left(a^{i}\right)_{i \in V_{I}}$.
- At $i \in V$:

Refer to its parental slots by $x_{I}^{i}=\left(x^{j}\right)_{j \in \mathbf{p a}(i)}$.
Refer to its parental values by $a_{I}^{i}=\left(a^{j}\right)_{j \in \mathbf{p a}(i)}$.

For Notational Convenience. . .

- Collectively refer to all input slots by $x_{I}=\left(x^{i}\right)_{i \in V_{I}}$.
- Collectively refer to all input values by $a_{I}=\left(a^{i}\right)_{i \in V_{I}}$.
- At $i \in V$:

Refer to its parental slots by $x_{I}^{i}=\left(x^{j}\right)_{j \in \mathbf{p a}(i)}$.
Refer to its parental values by $a_{I}^{i}=\left(a^{j}\right)_{j \in \mathbf{p a}(i)}$.

Two equally valid ways of viewing any $a^{i} \in \mathbb{R}$ as a function:

For Notational Convenience. . .

- Collectively refer to all input slots by $x_{I}=\left(x^{i}\right)_{i \in V_{I}}$.
- Collectively refer to all input values by $a_{I}=\left(a^{i}\right)_{i \in V_{I}}$.
- At $i \in V$:

Refer to its parental slots by $x_{I}^{i}=\left(x^{j}\right)_{j \in \mathbf{p a}(i)}$.
Refer to its parental values by $a_{I}^{i}=\left(a^{j}\right)_{j \in \mathbf{p a}(i)}$.

Two equally valid ways of viewing any $a^{i} \in \mathbb{R}$ as a function:

- A "global" function of x_{I} evaluated at a_{I}.

For Notational Convenience. . .

- Collectively refer to all input slots by $x_{I}=\left(x^{i}\right)_{i \in V_{I}}$.
- Collectively refer to all input values by $a_{I}=\left(a^{i}\right)_{i \in V_{I}}$.
- At $i \in V$:

Refer to its parental slots by $x_{I}^{i}=\left(x^{j}\right)_{j \in \mathbf{p a}(i)}$.
Refer to its parental values by $a_{I}^{i}=\left(a^{j}\right)_{j \in \mathbf{p a}(i)}$.

Two equally valid ways of viewing any $a^{i} \in \mathbb{R}$ as a function:

- A "global" function of x_{I} evaluated at a_{I}.
- A "local" function of x_{I}^{i} evaluated at a_{I}^{i}.

Computation Graph: Gradients

- Now for every node $i \in V$, we introduce an additional slot $z^{i} \in \mathbb{R}$ defined as

$$
z^{i}:=\left.\frac{\partial x^{\omega}}{\partial x^{i}}\right|_{x_{I}=a_{I}}
$$

- The goal of backpropagation is to calculate z^{i} for every $i \in V$.
- Why are we done if we achieve this goal?

Key Ideas of Backpropagation

- Chain rule on the DAG structure

$$
z^{i}:=\left.\frac{\partial x^{\omega}}{\partial x^{i}}\right|_{x_{I}=a_{I}}
$$

Key Ideas of Backpropagation

- Chain rule on the DAG structure

$$
z^{i}:=\left.\frac{\partial x^{\omega}}{\partial x^{i}}\right|_{x_{I}=a_{I}}=\left.\sum_{j \in \mathbf{c h}(i)} \frac{\partial x^{\omega}}{\partial x^{j}}\right|_{x_{I}=a_{I}} \times\left.\frac{\partial x^{j}}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}}
$$

Key Ideas of Backpropagation

- Chain rule on the DAG structure

$$
\begin{aligned}
z^{i}:=\left.\frac{\partial x^{\omega}}{\partial x^{i}}\right|_{x_{I}=a_{I}} & =\left.\sum_{j \in \mathbf{c h}(i)} \frac{\partial x^{\omega}}{\partial x^{j}}\right|_{x_{I}=a_{I}} \times\left.\frac{\partial x^{j}}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}} \\
& =\sum_{j \in \mathbf{c h}(i)} z^{j} \times\left.\underbrace{}_{\text {easy to calculate }} \frac{\partial f^{j}\left(x_{I}^{j}\right)}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}}
\end{aligned}
$$

Key Ideas of Backpropagation

- Chain rule on the DAG structure

$$
\begin{aligned}
z^{i}:=\left.\frac{\partial x^{\omega}}{\partial x^{i}}\right|_{x_{I}=a_{I}} & =\left.\sum_{j \in \mathbf{c h}(i)} \frac{\partial x^{\omega}}{\partial x^{j}}\right|_{x_{I}=a_{I}} \times\left.\frac{\partial x^{j}}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}} \\
& =\sum_{j \in \mathbf{c h}(i)} z^{j} \times \underbrace{\left.\frac{\partial f^{j}\left(x_{I}^{j}\right)}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}}}_{\text {easy to calculate }}
\end{aligned}
$$

- If we compute z^{i} in a reverse topological ordering, then we will have already computed z^{j} for all $j \in \mathbf{c h}(i)$.

Key Ideas of Backpropagation

- Chain rule on the DAG structure

$$
\begin{aligned}
z^{i}:=\left.\frac{\partial x^{\omega}}{\partial x^{i}}\right|_{x_{I}=a_{I}} & =\left.\sum_{j \in \mathbf{c h}(i)} \frac{\partial x^{\omega}}{\partial x^{j}}\right|_{x_{I}=a_{I}} \times\left.\frac{\partial x^{j}}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}} \\
& =\sum_{j \in \mathbf{c h}(i)} z^{j} \times \underbrace{\left.\frac{\partial f^{j}\left(x_{I}^{j}\right)}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}}}_{\text {easy to calculate }}
\end{aligned}
$$

- If we compute z^{i} in a reverse topological ordering, then we will have already computed z^{j} for all $j \in \mathbf{c h}(i)$.
- What's the base case z^{ω} ?

Backpropagation

Input: computation graph $G=(V, A)$ with output node $\omega \in V$ whose value slots $x^{i}=a^{i}$ are already populated for every $i \in V$ Result: populates z^{i} for every $i \in V$

1. Set $z^{\omega} \leftarrow 1$.
2. Pick some topological ordering π of V.
3. For i in reverse order of π, set

$$
z^{i} \leftarrow \sum_{j \in \mathbf{c h}(i)} z^{j} \times\left.\frac{\partial f^{j}\left(x_{I}^{j}\right)}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}}
$$

Exercise

Calculate the gradient of

$$
f(x, y):=(x+y) x y^{2}
$$

with respect to x at $x=1$ and $y=2$ by performing backpropagation. That is, calculate the scalar

$$
\left.\frac{\partial f(x, y)}{\partial x}\right|_{(x, y)=(1,2)}
$$

Implementation

- Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
- "Add" function creates a child node c with two parents (a, b) and sets $c . z \leftarrow 0$.

Implementation

- Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
- "Add" function creates a child node c with two parents (a, b) and sets $c . z \leftarrow 0$.
- Each node has an associated forward function.
- Calling forward at c populates $c \cdot x=a . x+b . x$ (assumes parents have their values).

Implementation

- Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
- "Add" function creates a child node c with two parents (a, b) and sets $c . z \leftarrow 0$.
- Each node has an associated forward function.
- Calling forward at c populates $c . x=a . x+b . x$ (assumes parents have their values).
- Each node also has an associated backward function.
- Calling backward at c "broadcasts" its gradient $c . z$ (assumes it's already calculated) to its parents

$$
\begin{aligned}
& a . z \leftarrow a . z+c . z \\
& b . z \leftarrow b . z+c . z
\end{aligned}
$$

Implementation (Cont.)

- Express your loss $J_{B}(\theta)$ on minibatch B at $\theta=\hat{\theta}$ as a computation graph.

Implementation (Cont.)

- Express your loss $J_{B}(\theta)$ on minibatch B at $\theta=\hat{\theta}$ as a computation graph.
- Forward pass. For each node a in a topological ordering,

$$
a . \text { forward() }
$$

Implementation (Cont.)

- Express your loss $J_{B}(\theta)$ on minibatch B at $\theta=\hat{\theta}$ as a computation graph.
- Forward pass. For each node a in a topological ordering,
a.forward()
- Backward pass. For each node a in a reverse topological ordering,
a.backward()

Implementation (Cont.)

- Express your loss $J_{B}(\theta)$ on minibatch B at $\theta=\hat{\theta}$ as a computation graph.
- Forward pass. For each node a in a topological ordering,
a.forward()
- Backward pass. For each node a in a reverse topological ordering,

$$
a \cdot \text { backward }()
$$

- The gradient of $J_{B}(\theta)$ at $\theta=\hat{\theta}$ is stored in the input nodes of the computation graph.

General Backpropagation

- Computation graph in which input values that are vectors

$$
x^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

General Backpropagation

- Computation graph in which input values that are vectors

$$
x^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

- The corresponding gradients are also vectors of the same size

$$
z^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

General Backpropagation

- Computation graph in which input values that are vectors

$$
x^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

- The corresponding gradients are also vectors of the same size

$$
z^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

- Backpropagation has exactly the same structure using the generalized chain rule

$$
z^{i}=\left.\sum_{j \in \mathbf{c h}(i)} \frac{\partial x^{\omega}}{\underbrace{j}}\right|_{x_{I}=a_{I}} \times\left.\frac{\partial x^{j}}{\underbrace{j}}\right|_{d^{j} \times d^{i}}
$$

General Backpropagation

- Computation graph in which input values that are vectors

$$
x^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

- The corresponding gradients are also vectors of the same size

$$
z^{i} \in \mathbb{R}^{d^{i}} \quad \forall i \in V
$$

- Backpropagation has exactly the same structure using the generalized chain rule

$$
z^{i}=\left.\sum_{j \in \operatorname{ch}(i)} \frac{\partial x^{\omega}}{\partial x^{j}}\right|_{1 \times d^{j}=a_{I}} \times\left.\frac{\partial x^{j}}{\partial x^{i}}\right|_{x_{I}^{j}=a_{I}^{j}}
$$

- For detail, read the note at: http://karlstratos.com/notes/backprop.pdf

Vector-Valued Functions and Jacobian

- View $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ simply as m scalar-valued functions $f_{1} \ldots f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

$$
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right] \quad \forall x \in \mathbb{R}^{n}
$$

- The Jacobian of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at $x=a$ is an $m \times n$ matrix

$$
\left.\frac{\partial f(x)}{\partial x}\right|_{x=a} \in \mathbb{R}^{m \times n}
$$

whose i-th row is $\nabla f_{i}(a) \in \mathbb{R}^{n}$

- Equivalently,

$$
\left[\left.\frac{\partial f(x)}{\partial x}\right|_{x=a}\right]_{i, j}=\left.\frac{\partial f_{j}(x)}{\partial x_{i}}\right|_{x=a}
$$

