Backpropagation
Karl Stratos

June 25, 2018

1/28

Review/Setup

» A model is a function fy defined by a set of parameters 0
that receives an input @ and outputs some value.

» For example, a logistic regressor is parameterized by a single
vector = {w} and defines

1
- l+exp(—w'x)

Jw(x) : € [0,1]

which represents the probability of “on” for the given input x.

2/28

Review/Setup

» A model is a function fy defined by a set of parameters 0
that receives an input @ and outputs some value.

» For example, a logistic regressor is parameterized by a single
vector = {w} and defines

1
- l+exp(—w'x)

Jw(x) : € [0,1]

which represents the probability of “on” for the given input x.

» The model is trained by minimizing some average loss Jg(6)
on training data S (e.g., the log loss for logistic regression).

2/28

Review/Setup

» A model is a function fy defined by a set of parameters 0
that receives an input @ and outputs some value.

» For example, a logistic regressor is parameterized by a single
vector = {w} and defines

1
- l+exp(—w'x)

Jw(x) : € [0,1]

which represents the probability of “on” for the given input x.

» The model is trained by minimizing some average loss Jg(6)
on training data S (e.g., the log loss for logistic regression).

» If Js(0) is differentiable, we can use stochastic gradient
descent (SGD) to efficiently minimize the loss.

2/28

Sketch of SGD

Initialize model parameters 6 and repeat the following:
1. Choose a random “mini-batch” B C S of your training data.

3/28

Sketch of SGD

Initialize model parameters 6 and repeat the following:
1. Choose a random “mini-batch” B C S of your training data.

2. Define a “partial” loss function Jp(6) on this mini-batch.

3/28

Sketch of SGD

Initialize model parameters 6 and repeat the following:

1. Choose a random “mini-batch” B C S of your training data.

2. Define a “partial” loss function Jp(6) on this mini-batch.

3. Calculate the gradient of Jz(6) (with respect to)

VJp(0)

3/28

Sketch of SGD

Initialize model parameters 6 and repeat the following:

1. Choose a random “mini-batch” B C S of your training data.

2. Define a “partial” loss function Jp(6) on this mini-batch.

3. Calculate the gradient of Jz(6) (with respect to)

VJ5(0)
4. Update the parameter value

0« 0 —nV.Jg(0)

3/28

Calculating the Gradient

» Implication: we can optimize any (differentiable) average loss
function by SGD if we can calculate the gradient of the
scalar-valued loss function Jp(f) € R on any batch B with
respect to parameter 6.

4/28

Calculating the Gradient

» Implication: we can optimize any (differentiable) average loss
function by SGD if we can calculate the gradient of the
scalar-valued loss function Jp(f) € R on any batch B with
respect to parameter 6.

» For simple models, we can manually specify the gradient. For
example, we derived the gradient of the log loss

1

VJIE% (w) = 3l Y (Y- ful@) xR
(z,y)eB

and calculated this vector on batch B to update the
parameter w € R%.

4/28

Problems with Manually Deriving Gradient Formula?

5/28

Problems with Manually Deriving Gradient Formula?

» It is specific to a particular loss function.
» For a new loss function, you have to derive its gradient again.

5/28

Problems with Manually Deriving Gradient Formula?

» It is specific to a particular loss function.
» For a new loss function, you have to derive its gradient again.

» What if loss Jg(6) is an extremely complicated function of 7

» It is technically possible to manually derive a gradient formula,
but it is tedious/difficult/error-prone.

5/28

Backpropagation: Input and Output

» A technique to automatically calculate V.Jg(6) for any
definition of scalar-valued loss function Jp(6) € R.

Input: loss function J5(0) € R, parameter value 0
Output: VJp(0), the gradient of Jp(0) at 0 =0

6/28

Backpropagation: Input and Output

» A technique to automatically calculate V.Jp(#) for any
definition of scalar-valued loss function Jp(6) € R.
Input: loss function J5(0) € R, parameter value 0
Output: VJp(0), the gradient of Jp(0) at 0 =0

» For example, when applied to the log loss JLOG(€]R at
some parameter w € R, it calculates VJLOG(

without needing an explicit gradient formula.

w)
)ER

6/28

Backpropagation: Input and Output

» A technique to automatically calculate V.Jp(#) for any
definition of scalar-valued loss function Jp(6) € R.
Input: loss function J5(0) € R, parameter value 0
Output: VJp(0), the gradient of Jp(0) at 0 =0

» For example, when applied to the log loss JLOG(€]R at
some parameter w € R, it calculates VJLOG(

without needing an explicit gradient formula.

w)
)ER

» More generally, it can calculate the gradient of an arbitrarily
complicated (differentiable) function of parameter 6.

Including neural networks

6/28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation
Computation Graph, Forward Pass
Backpropagation

7/28

Notation

» For the most part, we will consider (differentiable) function
f : R — R with a single 1-dimensional parameter x € R.

» The gradient/derivative of f is a function of z and written as

of(z) .
W.R—HR

» The value of the gradient of f with respect to x at x = a is
written as

8 /28

Chain Rule

» Given any differentiable functions f, g from R to R,

9g(f(x))
Ox

o) 9
of(x) Oz

easy to calculate

9/28

Exercises

At ©x = 42,

» What is the value of the gradient of f(z) :
» What is the value of the gradient of f(z) :
» What is the value of the gradient of f(z) :
» What is the value of the gradient of f(z) :
(z) :
(z) :

X

> What is the value of the gradient of f(x

()?

7
2x
2x +999997
3
ex
exp(2z® + 10)?

» What is the value of the gradient of f(x
» What is the value of the gradient of

f(z) == log(exp(2z> + 10))

10 /28

Chain Rule for a Function of Multiple Input Variables

> Let fy ... f, denote any differentiable functions from R to R.

> If g : R™ — R is a differentiable function from R™ to R,

9g(f1(x), .- -, fm(x))

) Ox
~——

easy to calculate

ox
= 0g(fi(®), ... f(@)) dfi(x)
= ; 1 e y

» Calculate the gradient of 2 + 22 + yx with respect to = using
the chain rule.

11/28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation
Computation Graph, Forward Pass
Backpropagation

12 /28

DAG

A directed acylic graph (DAG) is a directed graph G = (V, A)
with a topological ordering: a sequence 7w of V' such that for
every arc (i,j) € A, i comes before j in .

o @6 1 —0®

For backpropagation: usually assume have many roots and 1 leaf

13 /28

Notation

o @ 56

V ={1,2,3,4,5,6}
Vi ={1,2}
Vi = {3,4,5,6}
A={(1,3),(1,5),(2,4),(3,4), (4,6), (5,6)}
pa(4) = {2,3}
ch(1) = {3,5}
I = {(1,2,3,4,5,6), (2,1,3,4,5,6)}

14 /28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation
Computation Graph, Forward Pass
Backpropagation

15 /28

Computation Graph

» DAG G = (V, E) with a single output node w € V.

» Every node i € V is equipped with a value 2* € R:

1. For input node i € V;, we assume x’ = a’ is given.
2. For non-input node i € Vi, we assume a differentiable
function f7 : RIPPO| 5 R and compute

o' = f((27) jepa(i))

16 / 28

Computation Graph

» DAG G = (V, E) with a single output node w € V.

» Every node i € V is equipped with a value 2* € R:

1. For input node i € V;, we assume x’ = a’ is given.
2. For non-input node i € Vi, we assume a differentiable
function f7 : RIPPO| 5 R and compute

o' = f((27) jepa(i))

» Thus G represents a function: it receives muItlpIe values
x' = a' for i € V7 and calculates a scalar z% € R.

» We can calculate z“ by a forward pass.

16 / 28

Forward Pass

Input: computation graph G = (V, A) with output node w € V
Result: populates z* = a' for every i € V

1. Pick some topological ordering w of V.

2. For 7 in order of m, if i € Vv is a non-input node, set

2+ a' = f1((0!) jepati)

Why do we need a topological ordering?

17 /28

Exercise

Construct the computation graph associated with the function

flz,y) = (z + y)zy’

Compute its output value at z = 1 and y = 2 by performing a
forward pass.

18 /28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation
Computation Graph, Forward Pass
Backpropagation

19/28

For Notational Convenience. ..

» Collectively refer to all input slots by z; = (z%);cy;.

» Collectively refer to all input values by a; = (a‘);cv,.

20 /28

For Notational Convenience. ..

» Collectively refer to all input slots by z; = (z%);cy;.

» Collectively refer to all input values by a; = (a‘);cv,.

» AtieV:
Refer to its parental slots by 2} = (27) ;cpa(i).
Refer to its parental values by a} = (a’)cpa(i)-

20 /28

For Notational Convenience. ..

» Collectively refer to all input slots by z; = (z%);cy;.

» Collectively refer to all input values by a; = (a‘);cv,.

» AtieV:
Refer to its parental slots by 2} = (27) ;cpa(i).
Refer to its parental values by a} = (a’)cpa(i)-

Two equally valid ways of viewing any a’ € R as a function:

20 /28

For Notational Convenience. ..

» Collectively refer to all input slots by z; = (z%);cy;.

» Collectively refer to all input values by a; = (a‘);cv,.

» AtieV:
Refer to its parental slots by 2} = (27) ;cpa(i).
Refer to its parental values by a} = (a’)cpa(i)-

Two equally valid ways of viewing any a’ € R as a function:

» A “global” function of z; evaluated at aj.

20 /28

For Notational Convenience. ..

» Collectively refer to all input slots by z; = (z%);cy;.

» Collectively refer to all input values by a; = (a‘);cv,.

» AtieV:
Refer to its parental slots by 2} = (27) ;cpa(i).
Refer to its parental values by a} = (a’)cpa(i)-

Two equally valid ways of viewing any a’ € R as a function:

» A “global” function of z; evaluated at aj.

» A “local” function of 1:’1 evaluated at aiI.

20 /28

Computation Graph: Gradients

» Now for every node ¢ € V, we introduce an additional slot
2" € R defined as

ox”
ox!

2=

rr=ayg

» The goal of backpropagation is to calculate 2 for every
1eV.

» Why are we done if we achieve this goal?

21/28

Key ldeas of Backpropagation

» Chain rule on the DAG structure

; Ox¥
S

T 9t

Trr=arg

22 /28

Key ldeas of Backpropagation

» Chain rule on the DAG structure

ox®
- Z@

Tr=ar jech(i)

oxl

w
i Ox

2= :
ox*

rr=ajy mJI:a]I

22 /28

Key ldeas of Backpropagation

» Chain rule on the DAG structure

;0¥ O0z“ O’
T g _ _Z@ _ X oz i g
rr=ar jech(s) Tr=ar zi=aj
=y 2l)
= oxt | i_ i
jech(i) rr=ar

easy to calculate

22 /28

Key ldeas of Backpropagation

» Chain rule on the DAG structure

;0¥ O0z“ OxI
T B _ _Z@ _ X@j:j
rr=aj jech(i) rr=ay Ty=ay
oxt | j_.j
jech(i) rr=ay

easy to calculate

> If we compute 2 in a reverse topological ordering, then we
will have already computed 2z’ for all j € ch(7).

22 /28

Key ldeas of Backpropagation

» Chain rule on the DAG structure

;0¥ O0z“ OxI
T g _ _Z@ _ i i g
Tr=ar jech(i) Tr=ar r)=ay
Z Zj af]()
jéch(i) T aj—af

easy to calculate

> If we compute 2 in a reverse topological ordering, then we
will have already computed 2z’ for all j € ch(7).

» What's the base case 27

22 /28

Backpropagation

Input: computation graph G = (V, A) with output node w € V
whose value slots 2! = a’ are already populated for every i € V
Result: populates 2 for every i € V

1. Set z¥ «+ 1.
2. Pick some topological ordering 7 of V.

3. For 7 in reverse order of 7, set

G Y M

jech(z)

23 /28

Exercise

Calculate the gradient of

flz,y) = (z + y)zy®

with respect to x at = 1 and y = 2 by performing
backpropagation. That is, calculate the scalar

Of (x,y)

ox

(2,y)=(1,2)

24 /28

Implementation

» Each type of function f creates a child node from parent
nodes and initializes its gradient to zero.

» “Add" function creates a child node ¢ with two parents (a,b)
and sets c.z < 0.

25 /28

Implementation

» Each type of function f creates a child node from parent
nodes and initializes its gradient to zero.

» “Add" function creates a child node ¢ with two parents (a,b)
and sets c.z < 0.

» Each node has an associated forward function.

» Calling forward at ¢ populates c.z = a.x + b.x (assumes
parents have their values).

25 /28

Implementation

» Each type of function f creates a child node from parent
nodes and initializes its gradient to zero.

» “Add" function creates a child node ¢ with two parents (a,b)
and sets c.z < 0.

» Each node has an associated forward function.

» Calling forward at ¢ populates c.z = a.x + b.x (assumes
parents have their values).

» Each node also has an associated backward function.

» Calling backward at ¢ “broadcasts” its gradient c.z (assumes
it's already calculated) to its parents

a.z < a.z2+c.z
bz+bz+cz

25 /28

Implementation (Cont.)

» Express your loss J(f) on minibatch B at §# =6 as a
computation graph.

26 /28

Implementation (Cont.)

» Express your loss Jp(6) on minibatch B at =6 as a
computation graph.

» Forward pass. For each node a in a topological ordering,

a.forward()

26 /28

Implementation (Cont.)

» Express your loss Jp(6) on minibatch B at =6 as a
computation graph.

» Forward pass. For each node a in a topological ordering,

a.forward()

» Backward pass. For each node a in a reverse topological
ordering,

a.backward()

26 /28

Implementation (Cont.)

>

Express your loss .Jz(6#) on minibatch B at = 0 as a
computation graph.

Forward pass. For each node a in a topological ordering,

a.forward()

Backward pass. For each node a in a reverse topological
ordering,

a.backward()

The gradient of Jp(0) at @ = @ is stored in the input nodes of
the computation graph.

26 /28

General Backpropagation
» Computation graph in which input values that are vectors
o' e RY VieV

But the output value % € R is always a scalar!

27 /28

http://karlstratos.com/notes/backprop.pdf

General Backpropagation
» Computation graph in which input values that are vectors
o' e RY VieV

But the output value % € R is always a scalar!

» The corresponding gradients are also vectors of the same size
2 e RY VieV

27 /28

http://karlstratos.com/notes/backprop.pdf

General Backpropagation

» Computation graph in which input values that are vectors
gt e RY VieV

But the output value % € R is always a scalar!

» The corresponding gradients are also vectors of the same size

e RY VieV

» Backpropagation has exactly the same structure using the
generalized chain rule

i Z ax“ % 8&53
Z == - e —
7 7 . .
jech(i) 027 gm0, 07 |aj=ad
1xd? i xdi

27 /28

http://karlstratos.com/notes/backprop.pdf

General Backpropagation

» Computation graph in which input values that are vectors
gt e RY VieV

But the output value % € R is always a scalar!

» The corresponding gradients are also vectors of the same size
2 e RY VieV

» Backpropagation has exactly the same structure using the
generalized chain rule

i Z 01’“ % 8&03
Z == - e —
7 7 . .
jech(i) 027 gm0, 07 |aj=ad
1xd? i xdi

» For detail, read the note at:

http://karlstratos.com/notes/backprop.pdf
27 /28

http://karlstratos.com/notes/backprop.pdf

Vector-Valued Functions and Jacobian

> View f : R” — R™ simply as m scalar-valued functions
i fm :R* > R.

fi(z)
f(z) = : Vr € R"
» The Jacobian of f: R"™ — R" at x = a is an m X n matrix
af(x) c Ran
ax T=qa

whose i-th row is Vf;(a) € R"

» Equivalently,

28 /28

