Backpropagation

Karl Stratos

June 25, 2018

1/28

Review/Setup

- A model is a function f_θ defined by a set of parameters θ that receives an input x and outputs some value.
- For example, a logistic regressor is parameterized by a single vector θ = {w} and defines

$$f_{\boldsymbol{w}}(\boldsymbol{x}) := \frac{1}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})} \in [0, 1]$$

which represents the probability of "on" for the given input x.

Review/Setup

- A model is a function f_θ defined by a set of parameters θ that receives an input x and outputs some value.
- For example, a logistic regressor is parameterized by a single vector θ = {w} and defines

$$f_{\boldsymbol{w}}(\boldsymbol{x}) := \frac{1}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})} \in [0, 1]$$

which represents the probability of "on" for the given input x.

The model is trained by minimizing some average loss J_S(θ) on training data S (e.g., the log loss for logistic regression).

Review/Setup

- A model is a function f_θ defined by a set of parameters θ that receives an input x and outputs some value.
- For example, a logistic regressor is parameterized by a single vector θ = {w} and defines

$$f_{\boldsymbol{w}}(\boldsymbol{x}) := \frac{1}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})} \in [0, 1]$$

which represents the probability of "on" for the given input x.

- The model is trained by minimizing some average loss J_S(θ) on training data S (e.g., the log loss for logistic regression).
- ► If J_S(θ) is differentiable, we can use stochastic gradient descent (SGD) to efficiently minimize the loss.

Initialize model parameters θ and repeat the following:

1. Choose a random "mini-batch" $B \subset S$ of your training data.

Initialize model parameters θ and repeat the following:

1. Choose a random "mini-batch" $B \subset S$ of your training data.

2. Define a "partial" loss function $J_B(\theta)$ on this mini-batch.

Initialize model parameters θ and repeat the following:

- 1. Choose a random "mini-batch" $B \subset S$ of your training data.
- 2. Define a "partial" loss function $J_B(\theta)$ on this mini-batch.
- 3. Calculate the gradient of $J_B(\theta)$ (with respect to θ)

 $\nabla J_B(\theta)$

Initialize model parameters θ and repeat the following:

- 1. Choose a random "mini-batch" $B \subset S$ of your training data.
- 2. Define a "partial" loss function $J_B(\theta)$ on this mini-batch.
- 3. Calculate the gradient of $J_B(\theta)$ (with respect to θ)

 $\nabla J_B(\theta)$

4. Update the parameter value

$$\theta \leftarrow \theta - \eta \nabla J_B(\theta)$$

Calculating the Gradient

• Implication: we can optimize any (differentiable) average loss function by SGD if we can calculate the gradient of the scalar-valued loss function $J_B(\theta) \in \mathbb{R}$ on any batch B with respect to parameter θ .

Calculating the Gradient

- Implication: we can optimize any (differentiable) average loss function by SGD if we can calculate the gradient of the scalar-valued loss function $J_B(\theta) \in \mathbb{R}$ on any batch B with respect to parameter θ .
- For simple models, we can manually specify the gradient. For example, we *derived* the gradient of the log loss

$$abla J_B^{\mathrm{LOG}}(oldsymbol{w}) = rac{1}{|B|} \sum_{(oldsymbol{x},y)\in B} \left(y - f_{oldsymbol{w}}(oldsymbol{x})
ight) oldsymbol{x} \in \mathbb{R}^d$$

and calculated this vector on batch B to update the parameter $\boldsymbol{w} \in \mathbb{R}^d.$

Problems with Manually Deriving Gradient Formula?

Problems with Manually Deriving Gradient Formula?

It is specific to a particular loss function.

▶ For a new loss function, you have to derive its gradient again.

Problems with Manually Deriving Gradient Formula?

- It is specific to a particular loss function.
 - ▶ For a new loss function, you have to derive its gradient again.
- What if loss $J_B(\theta)$ is an *extremely* complicated function of θ ?
 - It is technically possible to manually derive a gradient formula, but it is tedious/difficult/error-prone.

Backpropagation: Input and Output

• A technique to automatically calculate $\nabla J_B(\theta)$ for any definition of scalar-valued loss function $J_B(\theta) \in \mathbb{R}$.

Input: loss function $J_B(\theta) \in \mathbb{R}$, parameter value $\hat{\theta}$ **Output**: $\nabla J_B(\hat{\theta})$, the gradient of $J_B(\theta)$ at $\theta = \hat{\theta}$ Backpropagation: Input and Output

• A technique to automatically calculate $\nabla J_B(\theta)$ for any definition of scalar-valued loss function $J_B(\theta) \in \mathbb{R}$.

Input: loss function $J_B(\theta) \in \mathbb{R}$, parameter value $\hat{\theta}$ **Output**: $\nabla J_B(\hat{\theta})$, the gradient of $J_B(\theta)$ at $\theta = \hat{\theta}$

▶ For example, when applied to the log loss $J_B^{\text{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}$ at some parameter $\hat{\boldsymbol{w}} \in \mathbb{R}^d$, it calculates $\nabla J_B^{\text{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}^d$ without needing an explicit gradient formula.

Backpropagation: Input and Output

• A technique to automatically calculate $\nabla J_B(\theta)$ for any definition of scalar-valued loss function $J_B(\theta) \in \mathbb{R}$.

Input: loss function $J_B(\theta) \in \mathbb{R}$, parameter value $\hat{\theta}$ **Output**: $\nabla J_B(\hat{\theta})$, the gradient of $J_B(\theta)$ at $\theta = \hat{\theta}$

- ▶ For example, when applied to the log loss $J_B^{\text{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}$ at some parameter $\hat{\boldsymbol{w}} \in \mathbb{R}^d$, it calculates $\nabla J_B^{\text{LOG}}(\hat{\boldsymbol{w}}) \in \mathbb{R}^d$ without needing an explicit gradient formula.
- More generally, it can calculate the gradient of an *arbitrarily* complicated (differentiable) function of parameter θ. Including neural networks

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG) Backpropagation Computation Graph, Forward Pass Backpropagation

Notation

- For the most part, we will consider (differentiable) function $f : \mathbb{R} \to \mathbb{R}$ with a single 1-dimensional parameter $x \in \mathbb{R}$.
- The gradient/derivative of f is a *function* of x and written as

$$\frac{\partial f(x)}{\partial x}: \mathbb{R} \to \mathbb{R}$$

► The value of the gradient of f with respect to x at x = a is written as

$$\left. \frac{\partial f(x)}{\partial x} \right|_{x=a} \in \mathbb{R}$$

Chain Rule

• Given any differentiable functions f, g from \mathbb{R} to \mathbb{R} ,

Exercises

At x = 42,

- What is the value of the gradient of f(x) := 7?
- What is the value of the gradient of f(x) := 2x?
- What is the value of the gradient of f(x) := 2x + 999999?
- What is the value of the gradient of $f(x) := x^3$?
- What is the value of the gradient of $f(x) := \exp(x)$?
- What is the value of the gradient of $f(x) := \exp(2x^3 + 10)$?
- What is the value of the gradient of

$$f(x) := \log(\exp(2x^3 + 10))$$

Chain Rule for a Function of Multiple Input Variables

• Let $f_1 \dots f_m$ denote any differentiable functions from \mathbb{R} to \mathbb{R} .

• If $g : \mathbb{R}^m \to \mathbb{R}$ is a differentiable function from \mathbb{R}^m to \mathbb{R} ,

$$\frac{\partial g(f_1(x), \dots, f_m(x))}{\partial x} = \sum_{i=1}^m \frac{\partial g(f_1(x), \dots, f_m(x))}{\partial f_i(x)} \times \underbrace{\frac{\partial f_i(x)}{\partial x}}_{\text{easy to calculate}}$$

► Calculate the gradient of x + x² + yx with respect to x using the chain rule.

Overview

Calculus Warm-Up Directed Acyclic Graph (DAG) Backpropagation Computation Graph, Forward Pass Backpropagation

DAG

A directed acylic graph (DAG) is a directed graph G = (V, A)with a topological ordering: a sequence π of V such that for every arc $(i, j) \in A$, i comes before j in π .

For backpropagation: usually assume have many roots and 1 leaf

Notation

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$V_I = \{1, 2\}$$

$$V_N = \{3, 4, 5, 6\}$$

$$A = \{(1, 3), (1, 5), (2, 4), (3, 4), (4, 6), (5, 6)\}$$

$$pa(4) = \{2, 3\}$$

$$ch(1) = \{3, 5\}$$

$$\Pi_G = \{(1, 2, 3, 4, 5, 6), (2, 1, 3, 4, 5, 6)\}$$

Overview

Calculus Warm-Up Directed Acyclic Graph (DAG) Backpropagation Computation Graph, Forward Pass Backpropagation

Computation Graph

▶ DAG G = (V, E) with a single output node $\omega \in V$.

• Every node $i \in V$ is equipped with a value $x^i \in \mathbb{R}$:

- 1. For input node $i \in V_I$, we assume $x^i = a^i$ is given.
- 2. For non-input node $i \in V_N$, we assume a differentiable function $f^i : \mathbb{R}^{|\mathbf{pa}(i)|} \to \mathbb{R}$ and compute

$$x^i = f^i((x^j)_{j \in \mathbf{pa}(i)})$$

Computation Graph

▶ DAG G = (V, E) with a single output node $\omega \in V$.

• Every node $i \in V$ is equipped with a value $x^i \in \mathbb{R}$:

- 1. For input node $i \in V_I$, we assume $x^i = a^i$ is given.
- 2. For non-input node $i \in V_N$, we assume a differentiable function $f^i : \mathbb{R}^{|\mathbf{pa}(i)|} \to \mathbb{R}$ and compute

$$x^i = f^i((x^j)_{j \in \mathbf{pa}(i)})$$

- Thus G represents a *function*: it receives multiple values $x^i = a^i$ for $i \in V_I$ and calculates a scalar $x^{\omega} \in \mathbb{R}$.
 - We can calculate x^{ω} by a **forward pass**.

Forward Pass

Input: computation graph G = (V, A) with output node $\omega \in V$ **Result**: populates $x^i = a^i$ for every $i \in V$

- 1. Pick some topological ordering π of V.
- 2. For *i* in order of π , if $i \in V_N$ is a non-input node, set

$$x^i \leftarrow a^i := f^i((a^j)_{j \in \mathbf{pa}(i)})$$

Why do we need a topological ordering?

Exercise

Construct the computation graph associated with the function

$$f(x,y) := (x+y)xy^2$$

Compute its output value at x = 1 and y = 2 by performing a forward pass.

Overview

Calculus Warm-Up Directed Acyclic Graph (DAG) Backpropagation Computation Graph, Forward Pass Backpropagation

- Collectively refer to all input slots by $x_I = (x^i)_{i \in V_I}$.
- Collectively refer to all input values by $a_I = (a^i)_{i \in V_I}$.

- Collectively refer to all input slots by $x_I = (x^i)_{i \in V_I}$.
- Collectively refer to all input values by $a_I = (a^i)_{i \in V_I}$.

• At $i \in V$:

Refer to its parental slots by $x_I^i = (x^j)_{j \in pa(i)}$. Refer to its parental values by $a_I^i = (a^j)_{j \in pa(i)}$.

- Collectively refer to all input slots by $x_I = (x^i)_{i \in V_I}$.
- Collectively refer to all input values by $a_I = (a^i)_{i \in V_I}$.

• At $i \in V$:

Refer to its parental slots by $x_I^i = (x^j)_{j \in pa(i)}$. Refer to its parental values by $a_I^i = (a^j)_{j \in pa(i)}$.

Two equally valid ways of viewing any $a^i \in \mathbb{R}$ as a function:

- Collectively refer to all input slots by $x_I = (x^i)_{i \in V_I}$.
- Collectively refer to all input values by $a_I = (a^i)_{i \in V_I}$.

• At $i \in V$:

Refer to its parental slots by $x_I^i = (x^j)_{j \in pa(i)}$. Refer to its parental values by $a_I^i = (a^j)_{j \in pa(i)}$.

Two equally valid ways of viewing any $a^i \in \mathbb{R}$ as a function:

• A "global" function of x_I evaluated at a_I .

- Collectively refer to all input slots by $x_I = (x^i)_{i \in V_I}$.
- Collectively refer to all input values by $a_I = (a^i)_{i \in V_I}$.

• At $i \in V$:

Refer to its parental slots by $x_I^i = (x^j)_{j \in pa(i)}$. Refer to its parental values by $a_I^i = (a^j)_{j \in pa(i)}$.

Two equally valid ways of viewing any $a^i \in \mathbb{R}$ as a function:

- A "global" function of x_I evaluated at a_I .
- A "local" function of x_I^i evaluated at a_I^i .

Computation Graph: Gradients

 \blacktriangleright Now for every node $i \in V,$ we introduce an additional slot $z^i \in \mathbb{R}$ defined as

$$z^i := \frac{\partial x^{\omega}}{\partial x^i} \Big|_{x_I = a_I}$$

- The goal of backpropagation is to calculate z^i for every $i \in V$.
 - Why are we done if we achieve this goal?

Chain rule on the DAG structure

$$z^i := \frac{\partial x^{\omega}}{\partial x^i} \bigg|_{x_I = a_I}$$

Chain rule on the DAG structure

$$z^i := \frac{\partial x^{\omega}}{\partial x^i} \bigg|_{x_I = a_I} = \sum_{j \in \mathsf{ch}(i)} \frac{\partial x^{\omega}}{\partial x^j} \bigg|_{x_I = a_I} \times \frac{\partial x^j}{\partial x^i} \bigg|_{x_I^j = a_I^j}$$

Chain rule on the DAG structure

$$\begin{aligned} z^{i} &:= \left. \frac{\partial x^{\omega}}{\partial x^{i}} \right|_{x_{I}=a_{I}} = \sum_{j \in \mathbf{ch}(i)} \left. \frac{\partial x^{\omega}}{\partial x^{j}} \right|_{x_{I}=a_{I}} \times \left. \frac{\partial x^{j}}{\partial x^{i}} \right|_{x_{I}^{j}=a_{I}^{j}} \\ &= \sum_{j \in \mathbf{ch}(i)} \left. \frac{\mathcal{Z}^{j}}{\mathcal{Z}} \times \underbrace{\left. \frac{\partial f^{j}(x_{I}^{j})}{\partial x^{i}} \right|_{x_{I}^{j}=a_{I}^{j}}}_{\text{easy to calculate}} \end{aligned}$$

Chain rule on the DAG structure

$$z^{i} := \frac{\partial x^{\omega}}{\partial x^{i}} \Big|_{x_{I}=a_{I}} = \sum_{j \in \mathbf{ch}(i)} \frac{\partial x^{\omega}}{\partial x^{j}} \Big|_{x_{I}=a_{I}} \times \frac{\partial x^{j}}{\partial x^{i}} \Big|_{x_{I}^{j}=a_{I}^{j}}$$
$$= \sum_{j \in \mathbf{ch}(i)} \underbrace{\mathbf{\mathcal{Z}}^{j}}_{\substack{i \in \mathbf{ch}(i)}} \times \underbrace{\frac{\partial f^{j}(x_{I}^{j})}{\partial x^{i}}}_{\text{easy to calculate}} \Big|_{x_{I}^{j}=a_{I}^{j}}$$

If we compute zⁱ in a reverse topological ordering, then we will have already computed z^j for all j ∈ ch(i).

Chain rule on the DAG structure

$$\begin{aligned} z^{i} &:= \left. \frac{\partial x^{\omega}}{\partial x^{i}} \right|_{x_{I}=a_{I}} = \sum_{j \in \mathsf{ch}(i)} \left. \frac{\partial x^{\omega}}{\partial x^{j}} \right|_{x_{I}=a_{I}} \times \left. \frac{\partial x^{j}}{\partial x^{i}} \right|_{x_{I}^{j}=a_{I}^{j}} \\ &= \sum_{j \in \mathsf{ch}(i)} \left. \underbrace{\mathcal{Z}^{j}}_{\text{easy to calculate}} \times \underbrace{\left. \frac{\partial f^{j}(x_{I}^{j})}{\partial x^{i}} \right|_{x_{I}^{j}=a_{I}^{j}}}_{\text{easy to calculate}} \end{aligned}$$

If we compute zⁱ in a reverse topological ordering, then we will have already computed z^j for all j ∈ ch(i).

• What's the base case z^{ω} ?

Backpropagation

Input: computation graph G = (V, A) with output node $\omega \in V$ whose value slots $x^i = a^i$ are already populated for every $i \in V$ **Result**: populates z^i for every $i \in V$

- 1. Set $z^{\boldsymbol{\omega}} \leftarrow 1$.
- 2. Pick some topological ordering π of V.
- 3. For *i* in reverse order of π , set

$$z^{i} \leftarrow \sum_{j \in \mathsf{ch}(i)} z^{j} \times \frac{\partial f^{j}(x_{I}^{j})}{\partial x^{i}} \Big|_{x_{I}^{j} = a_{I}^{j}}$$

Exercise

Calculate the gradient of

$$f(x,y) := (x+y)xy^2$$

with respect to x at x = 1 and y = 2 by performing backpropagation. That is, calculate the scalar

$$\frac{\partial f(x,y)}{\partial x}\Big|_{(x,y)=(1,2)}$$

24 / 28

Implementation

- Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
 - "Add" function creates a child node c with two parents (a, b) and sets $c.z \leftarrow 0$.

Implementation

- Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
 - "Add" function creates a child node c with two parents (a, b) and sets $c.z \leftarrow 0$.
- Each node has an associated **forward** function.
 - ► Calling forward at c populates c.x = a.x + b.x (assumes parents have their values).

Implementation

- Each type of function f creates a child node from parent nodes and initializes its gradient to zero.
 - "Add" function creates a child node c with two parents (a, b) and sets $c.z \leftarrow 0$.
- Each node has an associated **forward** function.
 - ► Calling forward at c populates c.x = a.x + b.x (assumes parents have their values).
- Each node also has an associated backward function.
 - ► Calling backward at *c* "broadcasts" its gradient *c.z* (assumes it's already calculated) to its parents

$$a.z \leftarrow a.z + c.z$$
$$b.z \leftarrow b.z + c.z$$

• Express your loss $J_B(\theta)$ on minibatch B at $\theta = \hat{\theta}$ as a computation graph.

- Express your loss $J_B(\theta)$ on minibatch B at $\theta = \hat{\theta}$ as a computation graph.
- **Forward pass.** For each node *a* in a topological ordering,

a.forward()

- Express your loss $J_B(\theta)$ on minibatch B at $\theta = \hat{\theta}$ as a computation graph.
- **Forward pass.** For each node *a* in a topological ordering,

a.forward()

 Backward pass. For each node a in a reverse topological ordering,

 $a. \mathbf{backward}()$

- Express your loss $J_B(\theta)$ on minibatch B at $\theta = \hat{\theta}$ as a computation graph.
- **Forward pass.** For each node *a* in a topological ordering,

a.forward()

 Backward pass. For each node a in a reverse topological ordering,

$a. {\bf backward}()$

• The gradient of $J_B(\theta)$ at $\theta = \hat{\theta}$ is stored in the input nodes of the computation graph.

Computation graph in which input values that are vectors

$$x^i \in \mathbb{R}^{d^i} \qquad \forall i \in V$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

Computation graph in which input values that are vectors

$$x^i \in \mathbb{R}^{d^i} \qquad \forall i \in V$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

 \blacktriangleright The corresponding gradients are also vectors of the same size $z^i \in \mathbb{R}^{d^i} \qquad \forall i \in V$

Computation graph in which input values that are vectors

$$x^i \in \mathbb{R}^{d^i} \qquad \quad \forall i \in V$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

- \blacktriangleright The corresponding gradients are also vectors of the same size $z^i \in \mathbb{R}^{d^i} \qquad \forall i \in V$
- Backpropagation has exactly the same structure using the generalized chain rule

$$z^{i} = \sum_{j \in \mathsf{ch}(i)} \frac{\partial x^{\omega}}{\partial x^{j}} \Big|_{x_{I} = a_{I}} \times \frac{\partial x^{j}}{\partial x^{i}} \Big|_{x_{I}^{j} = a_{I}^{j}} \\ \underbrace{\frac{\partial x^{j}}{\partial x^{i}}}_{d^{j} \times d^{i}}$$

Computation graph in which input values that are vectors

$$x^i \in \mathbb{R}^{d^i} \qquad \quad \forall i \in V$$

But the output value $x^{\omega} \in \mathbb{R}$ is always a scalar!

- \blacktriangleright The corresponding gradients are also vectors of the same size $z^i \in \mathbb{R}^{d^i} \qquad \forall i \in V$
- Backpropagation has exactly the same structure using the generalized chain rule

$$z^{i} = \sum_{j \in \mathsf{ch}(i)} \frac{\partial x^{\omega}}{\partial x^{j}} \bigg|_{x_{I} = a_{I}} \times \frac{\partial x^{j}}{\partial x^{i}} \bigg|_{x_{I}^{j} = a_{I}^{j}}$$

For detail, read the note at: http://karlstratos.com/notes/backprop.pdf

Vector-Valued Functions and Jacobian

▶ View $f : \mathbb{R}^n \to \mathbb{R}^m$ simply as m scalar-valued functions $f_1 \dots f_m : \mathbb{R}^n \to \mathbb{R}$.

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \qquad \forall x \in \mathbb{R}^n$$

• The Jacobian of $f : \mathbb{R}^n \to \mathbb{R}^m$ at x = a is an $m \times n$ matrix

$$\left. \frac{\partial f(x)}{\partial x} \right|_{x = \mathbf{a}} \in \mathbb{R}^{m \times n}$$

whose *i*-th row is $\nabla f_i(a) \in \mathbb{R}^n$

Equivalently,

$$\left[\frac{\partial f(x)}{\partial x}\Big|_{x=a}\right]_{i,j} = \frac{\partial f_j(x)}{\partial x_i}\Big|_{x=a}$$