
Backpropagation

Karl Stratos

June 25, 2018

1 / 28

Review/Setup

I A model is a function fθ defined by a set of parameters θ
that receives an input x and outputs some value.

I For example, a logistic regressor is parameterized by a single
vector θ = {w} and defines

fw(x) :=
1

1 + exp(−w>x)
∈ [0, 1]

which represents the probability of “on” for the given input x.

I The model is trained by minimizing some average loss JS(θ)
on training data S (e.g., the log loss for logistic regression).

I If JS(θ) is differentiable, we can use stochastic gradient
descent (SGD) to efficiently minimize the loss.

2 / 28

Review/Setup

I A model is a function fθ defined by a set of parameters θ
that receives an input x and outputs some value.

I For example, a logistic regressor is parameterized by a single
vector θ = {w} and defines

fw(x) :=
1

1 + exp(−w>x)
∈ [0, 1]

which represents the probability of “on” for the given input x.

I The model is trained by minimizing some average loss JS(θ)
on training data S (e.g., the log loss for logistic regression).

I If JS(θ) is differentiable, we can use stochastic gradient
descent (SGD) to efficiently minimize the loss.

2 / 28

Review/Setup

I A model is a function fθ defined by a set of parameters θ
that receives an input x and outputs some value.

I For example, a logistic regressor is parameterized by a single
vector θ = {w} and defines

fw(x) :=
1

1 + exp(−w>x)
∈ [0, 1]

which represents the probability of “on” for the given input x.

I The model is trained by minimizing some average loss JS(θ)
on training data S (e.g., the log loss for logistic regression).

I If JS(θ) is differentiable, we can use stochastic gradient
descent (SGD) to efficiently minimize the loss.

2 / 28

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random “mini-batch” B ⊂ S of your training data.

2. Define a “partial” loss function JB(θ) on this mini-batch.

3. Calculate the gradient of JB(θ) (with respect to θ)

∇JB(θ)
4. Update the parameter value

θ ← θ − η∇JB(θ)

3 / 28

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random “mini-batch” B ⊂ S of your training data.

2. Define a “partial” loss function JB(θ) on this mini-batch.

3. Calculate the gradient of JB(θ) (with respect to θ)

∇JB(θ)
4. Update the parameter value

θ ← θ − η∇JB(θ)

3 / 28

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random “mini-batch” B ⊂ S of your training data.

2. Define a “partial” loss function JB(θ) on this mini-batch.

3. Calculate the gradient of JB(θ) (with respect to θ)

∇JB(θ)

4. Update the parameter value

θ ← θ − η∇JB(θ)

3 / 28

Sketch of SGD

Initialize model parameters θ and repeat the following:

1. Choose a random “mini-batch” B ⊂ S of your training data.

2. Define a “partial” loss function JB(θ) on this mini-batch.

3. Calculate the gradient of JB(θ) (with respect to θ)

∇JB(θ)
4. Update the parameter value

θ ← θ − η∇JB(θ)

3 / 28

Calculating the Gradient

I Implication: we can optimize any (differentiable) average loss
function by SGD if we can calculate the gradient of the
scalar-valued loss function JB(θ) ∈ R on any batch B with
respect to parameter θ.

I For simple models, we can manually specify the gradient. For
example, we derived the gradient of the log loss

∇JLOG
B (w) =

1

|B|
∑

(x,y)∈B

(y − fw(x))x ∈ Rd

and calculated this vector on batch B to update the
parameter w ∈ Rd.

4 / 28

Calculating the Gradient

I Implication: we can optimize any (differentiable) average loss
function by SGD if we can calculate the gradient of the
scalar-valued loss function JB(θ) ∈ R on any batch B with
respect to parameter θ.

I For simple models, we can manually specify the gradient. For
example, we derived the gradient of the log loss

∇JLOG
B (w) =

1

|B|
∑

(x,y)∈B

(y − fw(x))x ∈ Rd

and calculated this vector on batch B to update the
parameter w ∈ Rd.

4 / 28

Problems with Manually Deriving Gradient Formula?

I It is specific to a particular loss function.
I For a new loss function, you have to derive its gradient again.

I What if loss JB(θ) is an extremely complicated function of θ?
I It is technically possible to manually derive a gradient formula,

but it is tedious/difficult/error-prone.

5 / 28

Problems with Manually Deriving Gradient Formula?

I It is specific to a particular loss function.
I For a new loss function, you have to derive its gradient again.

I What if loss JB(θ) is an extremely complicated function of θ?
I It is technically possible to manually derive a gradient formula,

but it is tedious/difficult/error-prone.

5 / 28

Problems with Manually Deriving Gradient Formula?

I It is specific to a particular loss function.
I For a new loss function, you have to derive its gradient again.

I What if loss JB(θ) is an extremely complicated function of θ?
I It is technically possible to manually derive a gradient formula,

but it is tedious/difficult/error-prone.

5 / 28

Backpropagation: Input and Output

I A technique to automatically calculate ∇JB(θ) for any
definition of scalar-valued loss function JB(θ) ∈ R.

Input: loss function JB(θ) ∈ R, parameter value θ̂

Output: ∇JB(θ̂), the gradient of JB(θ) at θ = θ̂

I For example, when applied to the log loss JLOG
B (ŵ) ∈ R at

some parameter ŵ ∈ Rd, it calculates ∇JLOG
B (ŵ) ∈ Rd

without needing an explicit gradient formula.

I More generally, it can calculate the gradient of an arbitrarily
complicated (differentiable) function of parameter θ.

Including neural networks

6 / 28

Backpropagation: Input and Output

I A technique to automatically calculate ∇JB(θ) for any
definition of scalar-valued loss function JB(θ) ∈ R.

Input: loss function JB(θ) ∈ R, parameter value θ̂

Output: ∇JB(θ̂), the gradient of JB(θ) at θ = θ̂

I For example, when applied to the log loss JLOG
B (ŵ) ∈ R at

some parameter ŵ ∈ Rd, it calculates ∇JLOG
B (ŵ) ∈ Rd

without needing an explicit gradient formula.

I More generally, it can calculate the gradient of an arbitrarily
complicated (differentiable) function of parameter θ.

Including neural networks

6 / 28

Backpropagation: Input and Output

I A technique to automatically calculate ∇JB(θ) for any
definition of scalar-valued loss function JB(θ) ∈ R.

Input: loss function JB(θ) ∈ R, parameter value θ̂

Output: ∇JB(θ̂), the gradient of JB(θ) at θ = θ̂

I For example, when applied to the log loss JLOG
B (ŵ) ∈ R at

some parameter ŵ ∈ Rd, it calculates ∇JLOG
B (ŵ) ∈ Rd

without needing an explicit gradient formula.

I More generally, it can calculate the gradient of an arbitrarily
complicated (differentiable) function of parameter θ.

Including neural networks

6 / 28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation

Computation Graph, Forward Pass
Backpropagation

7 / 28

Notation

I For the most part, we will consider (differentiable) function
f : R→ R with a single 1-dimensional parameter x ∈ R.

I The gradient/derivative of f is a function of x and written as

∂f(x)

∂x
: R→ R

I The value of the gradient of f with respect to x at x = a is
written as

∂f(x)

∂x

∣∣∣∣
x=a

∈ R

8 / 28

Chain Rule

I Given any differentiable functions f, g from R to R,

∂g(f(x))

∂x

=
∂g(f(x))

∂f(x)
× ∂f(x)

∂x︸ ︷︷ ︸
easy to calculate

9 / 28

Exercises

At x = 42,

I What is the value of the gradient of f(x) := 7?

I What is the value of the gradient of f(x) := 2x?

I What is the value of the gradient of f(x) := 2x+ 99999?

I What is the value of the gradient of f(x) := x3?

I What is the value of the gradient of f(x) := exp(x)?

I What is the value of the gradient of f(x) := exp(2x3 + 10)?

I What is the value of the gradient of

f(x) := log(exp(2x3 + 10))

10 / 28

Chain Rule for a Function of Multiple Input Variables

I Let f1 . . . fm denote any differentiable functions from R to R.

I If g : Rm → R is a differentiable function from Rm to R,

∂g(f1(x), . . . , fm(x))

∂x

=

m∑
i=1

∂g(f1(x), . . . , fm(x))

∂fi(x)
× ∂fi(x)

∂x︸ ︷︷ ︸
easy to calculate

I Calculate the gradient of x+ x2 + yx with respect to x using
the chain rule.

11 / 28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation

Computation Graph, Forward Pass
Backpropagation

12 / 28

DAG

A directed acylic graph (DAG) is a directed graph G = (V,A)
with a topological ordering: a sequence π of V such that for
every arc (i, j) ∈ A, i comes before j in π.

1 2 3 4 5 6

For backpropagation: usually assume have many roots and 1 leaf

13 / 28

Notation

1 2 3 4 5 6

V = {1, 2, 3, 4, 5, 6}
VI = {1, 2}
VN = {3, 4, 5, 6}
A = {(1, 3), (1, 5), (2, 4), (3, 4), (4, 6), (5, 6)}

pa(4) = {2, 3}
ch(1) = {3, 5}

ΠG = {(1, 2, 3, 4, 5, 6), (2, 1, 3, 4, 5, 6)}

14 / 28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation

Computation Graph, Forward Pass
Backpropagation

15 / 28

Computation Graph

I DAG G = (V,E) with a single output node ω ∈ V .

I Every node i ∈ V is equipped with a value xi ∈ R:

1. For input node i ∈ VI , we assume xi = ai is given.
2. For non-input node i ∈ VN , we assume a differentiable

function f i : R|pa(i)| → R and compute

xi = f i((xj)j∈pa(i))

I Thus G represents a function: it receives multiple values
xi = ai for i ∈ VI and calculates a scalar xω ∈ R.

I We can calculate xω by a forward pass.

16 / 28

Computation Graph

I DAG G = (V,E) with a single output node ω ∈ V .

I Every node i ∈ V is equipped with a value xi ∈ R:

1. For input node i ∈ VI , we assume xi = ai is given.
2. For non-input node i ∈ VN , we assume a differentiable

function f i : R|pa(i)| → R and compute

xi = f i((xj)j∈pa(i))

I Thus G represents a function: it receives multiple values
xi = ai for i ∈ VI and calculates a scalar xω ∈ R.

I We can calculate xω by a forward pass.

16 / 28

Forward Pass

Input: computation graph G = (V,A) with output node ω ∈ V
Result: populates xi = ai for every i ∈ V

1. Pick some topological ordering π of V .

2. For i in order of π, if i ∈ VN is a non-input node, set

xi ← ai := f i((aj)j∈pa(i))

Why do we need a topological ordering?

17 / 28

Exercise

Construct the computation graph associated with the function

f(x, y) := (x+ y)xy2

Compute its output value at x = 1 and y = 2 by performing a
forward pass.

18 / 28

Overview

Calculus Warm-Up

Directed Acyclic Graph (DAG)
Backpropagation

Computation Graph, Forward Pass
Backpropagation

19 / 28

For Notational Convenience. . .

I Collectively refer to all input slots by xI = (xi)i∈VI .

I Collectively refer to all input values by aI = (ai)i∈VI .

I At i ∈ V :

Refer to its parental slots by xiI = (xj)j∈pa(i).
Refer to its parental values by aiI = (aj)j∈pa(i).

Two equally valid ways of viewing any ai ∈ R as a function:

I A “global” function of xI evaluated at aI .

I A “local” function of xiI evaluated at aiI .

20 / 28

For Notational Convenience. . .

I Collectively refer to all input slots by xI = (xi)i∈VI .

I Collectively refer to all input values by aI = (ai)i∈VI .

I At i ∈ V :

Refer to its parental slots by xiI = (xj)j∈pa(i).
Refer to its parental values by aiI = (aj)j∈pa(i).

Two equally valid ways of viewing any ai ∈ R as a function:

I A “global” function of xI evaluated at aI .

I A “local” function of xiI evaluated at aiI .

20 / 28

For Notational Convenience. . .

I Collectively refer to all input slots by xI = (xi)i∈VI .

I Collectively refer to all input values by aI = (ai)i∈VI .

I At i ∈ V :

Refer to its parental slots by xiI = (xj)j∈pa(i).
Refer to its parental values by aiI = (aj)j∈pa(i).

Two equally valid ways of viewing any ai ∈ R as a function:

I A “global” function of xI evaluated at aI .

I A “local” function of xiI evaluated at aiI .

20 / 28

For Notational Convenience. . .

I Collectively refer to all input slots by xI = (xi)i∈VI .

I Collectively refer to all input values by aI = (ai)i∈VI .

I At i ∈ V :

Refer to its parental slots by xiI = (xj)j∈pa(i).
Refer to its parental values by aiI = (aj)j∈pa(i).

Two equally valid ways of viewing any ai ∈ R as a function:

I A “global” function of xI evaluated at aI .

I A “local” function of xiI evaluated at aiI .

20 / 28

For Notational Convenience. . .

I Collectively refer to all input slots by xI = (xi)i∈VI .

I Collectively refer to all input values by aI = (ai)i∈VI .

I At i ∈ V :

Refer to its parental slots by xiI = (xj)j∈pa(i).
Refer to its parental values by aiI = (aj)j∈pa(i).

Two equally valid ways of viewing any ai ∈ R as a function:

I A “global” function of xI evaluated at aI .

I A “local” function of xiI evaluated at aiI .

20 / 28

Computation Graph: Gradients

I Now for every node i ∈ V , we introduce an additional slot
zi ∈ R defined as

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

I The goal of backpropagation is to calculate zi for every
i ∈ V .

I Why are we done if we achieve this goal?

21 / 28

Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xjI=a

j
I︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

22 / 28

Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xjI=a

j
I︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

22 / 28

Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xjI=a

j
I︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

22 / 28

Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xjI=a

j
I︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

22 / 28

Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xjI=a

j
I

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xjI=a

j
I︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

22 / 28

Backpropagation

Input: computation graph G = (V,A) with output node ω ∈ V
whose value slots xi = ai are already populated for every i ∈ V
Result: populates zi for every i ∈ V

1. Set zω ← 1.

2. Pick some topological ordering π of V .

3. For i in reverse order of π, set

zi ←
∑

j∈ch(i)

zj ×
∂f j(xjI)

∂xi

∣∣∣∣
xjI=a

j
I

23 / 28

Exercise

Calculate the gradient of

f(x, y) := (x+ y)xy2

with respect to x at x = 1 and y = 2 by performing
backpropagation. That is, calculate the scalar

∂f (x, y)

∂x

∣∣∣∣
(x,y)=(1,2)

24 / 28

Implementation
I Each type of function f creates a child node from parent

nodes and initializes its gradient to zero.
I “Add” function creates a child node c with two parents (a, b)

and sets c.z ← 0.

I Each node has an associated forward function.
I Calling forward at c populates c.x = a.x+ b.x (assumes

parents have their values).

I Each node also has an associated backward function.
I Calling backward at c “broadcasts” its gradient c.z (assumes

it’s already calculated) to its parents

a.z ← a.z + c.z

b.z ← b.z + c.z

25 / 28

Implementation
I Each type of function f creates a child node from parent

nodes and initializes its gradient to zero.
I “Add” function creates a child node c with two parents (a, b)

and sets c.z ← 0.

I Each node has an associated forward function.
I Calling forward at c populates c.x = a.x+ b.x (assumes

parents have their values).

I Each node also has an associated backward function.
I Calling backward at c “broadcasts” its gradient c.z (assumes

it’s already calculated) to its parents

a.z ← a.z + c.z

b.z ← b.z + c.z

25 / 28

Implementation
I Each type of function f creates a child node from parent

nodes and initializes its gradient to zero.
I “Add” function creates a child node c with two parents (a, b)

and sets c.z ← 0.

I Each node has an associated forward function.
I Calling forward at c populates c.x = a.x+ b.x (assumes

parents have their values).

I Each node also has an associated backward function.
I Calling backward at c “broadcasts” its gradient c.z (assumes

it’s already calculated) to its parents

a.z ← a.z + c.z

b.z ← b.z + c.z

25 / 28

Implementation (Cont.)

I Express your loss JB(θ) on minibatch B at θ = θ̂ as a
computation graph.

I Forward pass. For each node a in a topological ordering,

a.forward()

I Backward pass. For each node a in a reverse topological
ordering,

a.backward()

I The gradient of JB(θ) at θ = θ̂ is stored in the input nodes of
the computation graph.

26 / 28

Implementation (Cont.)

I Express your loss JB(θ) on minibatch B at θ = θ̂ as a
computation graph.

I Forward pass. For each node a in a topological ordering,

a.forward()

I Backward pass. For each node a in a reverse topological
ordering,

a.backward()

I The gradient of JB(θ) at θ = θ̂ is stored in the input nodes of
the computation graph.

26 / 28

Implementation (Cont.)

I Express your loss JB(θ) on minibatch B at θ = θ̂ as a
computation graph.

I Forward pass. For each node a in a topological ordering,

a.forward()

I Backward pass. For each node a in a reverse topological
ordering,

a.backward()

I The gradient of JB(θ) at θ = θ̂ is stored in the input nodes of
the computation graph.

26 / 28

Implementation (Cont.)

I Express your loss JB(θ) on minibatch B at θ = θ̂ as a
computation graph.

I Forward pass. For each node a in a topological ordering,

a.forward()

I Backward pass. For each node a in a reverse topological
ordering,

a.backward()

I The gradient of JB(θ) at θ = θ̂ is stored in the input nodes of
the computation graph.

26 / 28

General Backpropagation
I Computation graph in which input values that are vectors

xi ∈ Rd
i ∀i ∈ V

But the output value xω ∈ R is always a scalar!

I The corresponding gradients are also vectors of the same size

zi ∈ Rd
i ∀i ∈ V

I Backpropagation has exactly the same structure using the
generalized chain rule

zi =
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

1×dj

× ∂x
j

∂xi

∣∣∣∣
xjI=a

j
I

dj×di

I For detail, read the note at:
http://karlstratos.com/notes/backprop.pdf

27 / 28

http://karlstratos.com/notes/backprop.pdf

General Backpropagation
I Computation graph in which input values that are vectors

xi ∈ Rd
i ∀i ∈ V

But the output value xω ∈ R is always a scalar!

I The corresponding gradients are also vectors of the same size

zi ∈ Rd
i ∀i ∈ V

I Backpropagation has exactly the same structure using the
generalized chain rule

zi =
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

1×dj

× ∂x
j

∂xi

∣∣∣∣
xjI=a

j
I

dj×di

I For detail, read the note at:
http://karlstratos.com/notes/backprop.pdf

27 / 28

http://karlstratos.com/notes/backprop.pdf

General Backpropagation
I Computation graph in which input values that are vectors

xi ∈ Rd
i ∀i ∈ V

But the output value xω ∈ R is always a scalar!

I The corresponding gradients are also vectors of the same size

zi ∈ Rd
i ∀i ∈ V

I Backpropagation has exactly the same structure using the
generalized chain rule

zi =
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

1×dj

× ∂x
j

∂xi

∣∣∣∣
xjI=a

j
I

dj×di

I For detail, read the note at:
http://karlstratos.com/notes/backprop.pdf

27 / 28

http://karlstratos.com/notes/backprop.pdf

General Backpropagation
I Computation graph in which input values that are vectors

xi ∈ Rd
i ∀i ∈ V

But the output value xω ∈ R is always a scalar!

I The corresponding gradients are also vectors of the same size

zi ∈ Rd
i ∀i ∈ V

I Backpropagation has exactly the same structure using the
generalized chain rule

zi =
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

1×dj

× ∂x
j

∂xi

∣∣∣∣
xjI=a

j
I

dj×di

I For detail, read the note at:
http://karlstratos.com/notes/backprop.pdf

27 / 28

http://karlstratos.com/notes/backprop.pdf

Vector-Valued Functions and Jacobian
I View f : Rn → Rm simply as m scalar-valued functions
f1 . . . fm : Rn → R.

f(x) =

 f1(x)
...

fm(x)

 ∀x ∈ Rn

I The Jacobian of f : Rn → Rm at x = a is an m× n matrix

∂f(x)

∂x

∣∣∣∣
x=a

∈ Rm×n

whose i-th row is ∇fi(a) ∈ Rn

I Equivalently, [
∂f(x)

∂x

∣∣∣∣
x=a

]
i,j

=
∂fj(x)

∂xi

∣∣∣∣
x=a

28 / 28

