
Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor:	Suriya	Gunasekar,	TTI	Chicago

25	June	2018

Day	6:	Neural	networks,	
backpropagation

Schedule

• 9:00am-10:25am	– Lecture 6.a:	Review of week 1,	
introduction to neural	networks
• 10:30am-11:30am	– Invited Talk	- Greg	Durett (also the
TTIC	colloquium talk)
• 11:30am-12:30pm	– Lunch
• 12:30pm-2:00pm	– Lecture 6.b:	Backpropagation
• 2:00pm-5:00pm	– Programming

1

Review of week 1

2

3

Supervised	learning	– key	questions

• Data: what	kind	of	data	can	we	
get?	how	much	data	can	we	get?

• Model:	what	is	the	correct	model	
for	my	data?	– want	to	minimize	
the	effort	put	into	this	question!

• Training:	what	resources	-
computation/memory	- does	the	
algorithm	need	to	estimate	the	
model	𝑓"?

• Testing: how	well	will	𝑓" perform	
when	deployed? what	is	the	
computational/memory	
requirement	during	deployment?

𝑓"	 face

Setup

Data
collec,on

Representation

Modeling

Estimation/
training

Model
selection

Da
ta

Al
go
rit
hm

Linear	regression

• Input	𝒙 ∈ 𝒳 ⊂ ℝ),	output	𝑦 ∈ ℝ,	want	to	learn	𝑓:𝒳 → ℝ

• Training	data	𝑆 = 𝒙 𝒊 , 𝑦 1 : 𝑖 = 1,2, … ,𝑁

• Parameterize	candidate	𝑓:𝒳 → ℝ by	linear	functions,	
ℋ = {𝒙 → 𝒘. 𝒙:𝑤 ∈ ℝ)}

• Estimate	𝒘 by	minimizing	loss	on	training	data

𝒘= = argmin
𝒘

	𝐽EFE 𝒘 :=G 𝒘.𝒙 𝒊 − 𝑦 1 I
J

1KL
o 𝐽EFE 𝒘 is	convex	in	𝒘àminimize	𝐽EFE 𝒘 by	setting	gradient	to	0
o 𝛻𝒘𝐽EFE 𝒘 = ∑ 𝒘. 𝒙 𝒊 − 𝑦 1 𝒙 𝒊J

1KL

o Closed	form	solution	𝒘= = 𝑿P𝑿 QL𝑿𝒚

• Can	get	non-linear	functions	by	mapping	𝒙 → 𝜙(𝒙) and	doing	
linear	regression	on	𝜙(𝒙)

4

Overfitting
• For	same	amount	of	data,	
more	complex	models	
(e.g.,	higher	degree	polynomials)		
overfit more

• or	need	more	data	to	fit	more
complex	models

• complexity	≈ number	of	parameters

Model	selection
• m	model	classes	 ℋL,ℋI,… ,ℋW

• 𝑆 = 𝑆XYZ1[∪ 𝑆]Z^ ∪ 𝑆X_`X
• Train on	𝑆XYZ1[to	pick	best	𝑓"Y ∈ ℋY

• Pick	𝑓"∗ based	on	validation	loss	on	𝑆]Z^
• Evaluate	test	loss	𝐿Ecdec 𝑓"

∗

5

reality

Regularization

• Complexity	of	model	class	can	also	be	controlled	by	
norm	of	parameters	– smaller	range	of	values	allowed
• Regularization	for	linear	regression

argmin
𝒘

	𝐽EFE 𝒘 + 𝜆 𝒘 I
I

argmin
𝒘

	𝐽EFE 𝒘 + 𝜆 𝒘 L

• Again	do	model	selection	to	pick	𝜆– using	𝑆]Z^ or	cross-
validation

6

Classification

• Output	𝑦 ∈ 𝒴 takes	discrete	set	of	values,	e.g.,	𝒴 = {0,1} or
𝒴 = {−1,1} or	𝒴 = {𝑠𝑝𝑎𝑚, 𝑛𝑜𝑠𝑝𝑎𝑚}
o Unlike	regression,	label-values	do	not	have	meaning	

• Classifiers	divide	the	space	of	input	𝒳 (often	ℝ))	to	
“regions”	where	each	region	is	assigned	a	label

• Non-parametric	models
o k-nearest	neighbors	– regions	
defined	based	on	nearest	neighbors

o decision	trees	– structured	
rectangular	regions

• Linear	models	– classifier	regions	
are	halfspaces

7

!"

!#

ç

Classification	– logistic	regression

• 𝒳 = ℝ), 	𝒴 = −1,1 , 𝑆 = 𝒙 𝒊 , 𝑦 1 : 𝑖 = 1,2, … , 𝑁

• Linear	model	𝑓 𝒙 = 𝑓𝒘 𝒙 = 𝒘. 𝒙

• Output	classifier	𝑦p 𝒙 = sign(𝒘. 𝒙)

• Empirical	risk	minimization

𝒘= 	= argmin
𝒘	

Glog 1 + exp −𝒘. 𝒙 𝒊 𝑦 1 	
�

1

		

• Probabilistic	formulation:	Pr 𝑦 = 1 𝒙 = L
Lyz{| Q𝒘.𝒙

• Multi-class	generalization:	𝒴 = {1,2, … ,𝑚}

• Pr 𝑦 𝒙 = z{| Q𝒘𝒚.𝒙

∑ z{| Q𝒘𝒚}.𝒙
�
~}

• Can	again	get	non-linear	decision	boundaries	by	mapping	𝒙 → 𝜙(𝒙)

8

Logistic	loss	
ℓ 𝑓 𝒙 , 𝑦 = log 1 + exp −𝑓(𝒙)𝑦

ℓ(
#
$
,&
)

0 #($)& →

Classification	– maximum	margin	classifier
Separable	data
• Original	formulation

𝒘= 	= argmax
𝒘∈ℝ�	

				min
1
	
𝑦 1 𝒘. 𝒙 𝒊

𝒘
• Fixing	 𝒘 = 1
𝒘= 	= argmax

𝒘	
				min

1
	𝑦 1 𝒘. 𝒙 𝒊 		s. t. 			 𝒘 = 1

• Fixing	min
1
		𝑦 1 𝒘. 𝒙 𝒊 = 1

𝒘� 	= argmin
𝒘

	 𝒘 I			s.t.			∀𝑖, 𝑦 1 (𝒘. 𝒙 𝒊) ≥ 1

Slack	variables	for	non-separable	data

𝒘= 	= argmin
𝒘,{����}

	 𝒘 I	+λ	 ∑ 𝜉1�
1 		s.t.			∀𝑖, 𝑦 1 𝒘. 𝒙 𝒊 ≥ 1 − 𝜉1

						= argmin
𝒘,{����}

	 𝒘 I	+λ	 ∑ max 0,1 − 𝑦 1 𝒘. 𝒙 𝒊�
1

9

!′

!

#$

#%

&

10

Kernel	trick
• Using	representor	theorem	𝒘 = ∑ 𝛽1𝒙 𝒊J

1KL

min
𝒘
	 𝒘 I 		+ 𝜆Gmax 0,1 − 𝑦 1 	𝒘. 𝒙 𝒊

�

1

≡ min
𝜷∈ℝ𝑵

	𝜷P𝑮𝜷 + 𝜆Gmax 0,1 − 𝑦 1 𝑮𝜷 1

�

1

𝑮 ∈ ℝJ×J	with	𝐺1� = 𝒙 𝒊 . 𝒙 𝒋 is	called	the	gram	matrix

• Optimization	depends	on	𝒙 𝒊 only	through	𝐺1� = 𝒙 𝒊 . 𝒙 𝒋

• For	prediction	𝒘=. 𝒙 = ∑ 𝛽1�
1 𝒙 𝒊 . 𝒙,	we	again	only	need	𝒙 𝒊 . 𝒙

• Function	𝐾 𝒙, 𝒙� = 𝒙. 𝒙′ is	called	the	Kernel
• When	learning	non-linear	classifiers	using	feature	transformations	𝒙 → 𝜙(𝒙)
and	𝑓𝒘 𝒙 = 𝒘.𝜙(𝒙)

o Classifier	fully	specified	in	terms	of	𝐾� 𝒙, 𝒙� = 𝐾(𝜙 𝒙 , 𝜙(𝒙′))
o 𝜙 𝒙 itself	can	be	very	very	high	dimensional	(maybe	even	infinite	
dimensional)

10
10

Optimization
• ERM+regularization	optimization	problem

𝒘= = argmin
𝒘

	𝐽E� 𝒘 :=Gℓ(𝒘.𝜙 𝒙 𝒊 , 𝑦 1)
J

1KL

+ 𝜆‖𝒘‖

• If	𝐽E� 𝒘 is	convex	in	𝒘,	then	𝒘= is	optimum	if	and	only	if gradient	at	𝒘= is	
0,	i.e.,		𝛻𝐽E� 𝒘= = 0	

• Gradient	descent:		start	with	initialization	𝒘𝟎 and	iteratively	update
o 𝒘𝒕y𝟏 = 𝒘𝒕 − 𝜂X𝛻𝐽E� 𝒘𝒕

o where	𝛻𝐽E� 𝒘𝒕 = ∑ 𝛻ℓ 𝒘𝒕. 𝜙 𝒙 𝒊 , 𝑦 1 	�
𝒊 + 𝜆𝛻‖𝒘𝒕‖

• Stochastic	gradient	descent
o use	gradients	from	only	one	example
o 𝒘𝒕y𝟏 = 𝒘𝒕 − 𝜂X	𝛻 1 𝐽E� 𝒘𝒕

o where𝛻 1 𝐽E� 𝒘𝒕 = 𝛻ℓ 𝒘𝒕. 𝜙 𝒙 𝒊 , 𝑦 1 + 𝜆𝛻‖𝒘𝒕‖ for	a	random	
sample	(𝒙 𝒊 , 𝑦 1)

11

Other	classification	models
• Optimal	unrestricted	predictor	

o Regression	+	squared	lossà 𝑓∗∗(𝒙) = 𝐄 𝑦 𝒙
o Classification	+	0-1	loss	à 𝑦p∗∗ 𝒙 = argmax¢ Pr(𝑦 = 𝑐|𝒙)

• Discriminative	models:	directly	model	Pr 𝑦 𝒙 ,	e.g.,	logistic	regression

• Generative	models: model	full	joint	distribution	Pr 𝑦, 𝒙 =
Pr 𝒙|𝑦 Pr(𝑦)

• Why	generative	models?
o One	conditional	might	be	simpler	to	model	with	prior	knowledge,	
e.g.,	compare	specifying	Pr(image|digit = 1) vs	
Pr(digit = 1|image)

o Naturally	handles	missing	data

• Two	examples	of	generative	models
o Naïve	Bayes	classifier
o Hidden	Markov	model

12

Other	classifiers
• Naïve	Bayes	classifier:	with	d	features	𝑥 = [𝑥L, 𝑥I, … , 𝑥)] where	each
𝑥L, 𝑥I, … , 𝑥) can	take	one	of	K	valuesà 𝐶	𝐾) parameters	

o NB	assumption:	features	are	independent	given	class	𝑦à 𝐶	𝐾	𝑑 params.	

Pr(𝑥L, 𝑥I, … , 𝑥)|𝑦) = Pr(𝑥L|𝑦) Pr(𝑥I|𝑦)…Pr(𝑥)|𝑦) = ∏ Pr(𝑥¬|𝑦))
¬KL

o Training	amounts	to	averaging	samples	across	classes

• Hidden	Markov	model:	variable	length	input/observations	
{𝑥L, 𝑥I, … , 𝑥W} (e.g.,	words)	and	variable	length	output/state	
{𝑦L, 𝑦I, … , 𝑦W} (e.g.,	tags)

o HMM	assumption:	a)	current	state	conditioned	on	immediate	previous	
state	is	conditionally	independent	of	all	other	variables,	and	(b)	current	
observation	conditioned	on	current	state is	conditionally	independent	of	
all	other	variables.	

Pr(𝑥L, 𝑥I, … , 𝑥W, 𝑦L, 𝑦I, … , 𝑦W) = Pr 𝑦L Pr(𝑥L|𝑦L)­Pr(𝑦¬|𝑦¬QL) Pr(𝑦¬|𝑥¬)
W

¬KI

o Parameters	estimated	using	MLE	dynamic	programming
13

Today
Introduction	to	neural	networks

Backpropagation

14

Graph	notation

15

General	variables	
- can	be	input	variables	like	𝑥L, 𝑥I, … 𝑥)
- prediction	𝑦p
- or	any	intermediate	computation	(we	will	see	

examples	soon)

𝑤L

𝑤I

𝑧L

𝑧I
𝑧¯ denotes	computation	𝑧¯ = 𝜎(𝑤L𝑧L + 𝑤I𝑧I)

for	some	“activation”	function	𝜎 (specified	
apriori)

Linear	classifier

• Biological	analogy:	
single	neuron	– stimuli		
reinforce	synaptic	
connections

𝑥L

𝑥I

𝑥¯

𝑥)

1

𝑓 𝒙 = 𝟏 𝒘. 𝒙 + 𝑤� ≥ 0
⋯

16Slide	credits:	Nati Srebro,	David	McAllester

Shallow	learning

• We	already	saw	how	to	use
linear	models	to	get	
non-linear	decision	boundaries
• Feature	transform:	map	𝒙 ∈ ℝ)
to	𝜙 𝒙 ∈ ℝ)}and	use

𝑓𝒘 𝒙 = 𝒘.𝜙(𝒙)
• Shallow	learning:	hand-crafted	
and	non-hierarchical	𝜙
o Polynomial	regression	with	
squared	or	logistic	loss,	𝜙 𝑥 ² = 𝑥²

o Kernel	SVM:	𝐾 𝒙, 𝒙�	 	= 𝜙 𝒙 . 𝜙 𝒙�

17

𝑓 𝒙 =
𝟏 𝒘.𝜙 𝒙 ≥ 0

⋯

𝜙(𝒙)L

𝜙(𝒙)I

𝜙(𝒙)¯

𝜙(𝒙))}

Slide	credit:	Nati Srebro

Combining	Linear	Units

𝑧L = 𝟏(𝑥L − 𝑥I > 0)

𝑓 𝒙 = 𝟏 𝑧L + 𝑧I > 0

𝑥L

𝑥I

18

1

1

𝑧I = 𝟏(𝑥I − 𝑥L > 0)

• The	network	represents	the	function
𝑓 𝑥 = 𝑥L	and	not 𝑥I 	or	 𝑥I	and	not 𝑥L

• Not	a	linear	function	of	𝑥

Slide	credit:	Nati Srebro

Combining	Linear	Units

𝑧L = 𝟏(𝒘𝟏. 𝒙 > 0)

𝑧I = 𝟏(𝒘𝟐. 𝒙 > 0)

𝑓 𝒙 = 𝟏 𝑤�L𝑧L + 𝑤�I𝑧I ≥ 0

𝑥L

𝑥I

19

𝑤LL

𝑤II

Feed-Forward	Neural	Networks

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓 𝒙 = 𝜎 ∑ 𝑊 I 𝑗 𝑧 𝑗�
�

20

𝑧 𝑖 = 𝜎 ∑ 𝑊 L 𝑗, 𝑖 	𝑥��
�

Figure	credit:	Nati Srebro

Feed-Forward	Neural	Networks

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓 𝒙 = 𝜎 ∑ 𝑊 I 𝑗 𝑧 𝑗�
�

21

𝑧 1 = 𝜎 ∑ 𝑊 L 𝑗, 1 	𝑥��
�

Feed-Forward	Neural	Networks

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓 𝒙 = 𝜎 ∑ 𝑊 I 𝑗 𝑧 𝑗�
�

22

𝑧 2 = 𝜎 ∑ 𝑊 L 𝑗, 2 	𝑥��
�

Feed-Forward	Neural	Networks

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓 𝒙 = 𝜎 ∑ 𝑊 I 𝑗 𝑧 𝑗�
�

23

𝑧 3 = 𝜎 ∑ 𝑊 L 𝑗, 3 	𝑥��
�

Feed-Forward	Neural	Networks

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓 𝒙 = 𝜎 ∑ 𝑊 I 𝑗 𝑧 𝑗�
�

24

𝑧 𝑑L = 𝜎 ∑ 𝑊 L 𝑗, 𝑑L 	𝑥��
�

Feed-Forward	Neural	Networks

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓 𝒙 = 𝜎 ∑ 𝑊 I 𝑗 𝑧 𝑗�
�

25

𝑧 𝑖 = 𝜎 ∑ 𝑊 L 𝑗, 𝑖 	𝑥��
�

Feed-Forward	Neural	Networks

Architecture:

• Directed	Acyclic	Graph	𝐺(𝑉, 𝐸).	Units	(neurons)	indexed	by	vertices	in	𝑉.

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

26Slide	credit:	Nati Srebro

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣L …𝑣) ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣1 = 𝑥1

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

27Slide	credit:	Nati Srebro

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)
𝑢

𝑣

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣L …𝑣) ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣1 = 𝑥1
• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]

• Pre-activation	 𝑎[𝑣] = ∑ 𝑾[𝑢 → 𝑣]�
Á→]∈¼ 𝑜[𝑢]

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

28Slide	credit:	Nati Srebro

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)
𝑢

𝑣

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣L …𝑣) ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣1 = 𝑥1
• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]

• Pre-activation	 𝑎[𝑣] = ∑ 𝑾[𝑢 → 𝑣]�
Á→]∈¼ 𝑜[𝑢]

• Output	value	 𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

29Slide	credit:	Nati Srebro

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)
𝑢

𝑣

𝑣ÂÁX

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣L …𝑣) ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣1 = 𝑥1
• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]

• Pre-activation	 𝑎[𝑣] = ∑ 𝑾[𝑢 → 𝑣]�
Á→]∈¼ 𝑜[𝑢]

• Output	value	 𝑜 𝑣 = 𝜎(𝑎 𝑣)
• “Output	Unit”	𝑣ÂÁX ∈ 𝑉,	𝑓Ã 𝒙 = 𝑎 𝑣ÂÁX

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

30

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)
𝑢

𝑣

𝑣ÂÁX

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣L …𝑣) ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣1 = 𝑥1
• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]

• Pre-activation	 𝑎[𝑣] = ∑ 𝑾[𝑢 → 𝑣]�
Á→]∈¼ 𝑜[𝑢]

• Output	value	 𝑜 𝑣 = 𝜎(𝑎 𝑣)
• “Output	Unit”	𝑣ÂÁX ∈ 𝑉,	𝑓Ã 𝒙 = 𝑎 𝑣ÂÁX

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

31

Some	textbooks/convention	don’t	make	the	
distinction	between	pre-activation	and	

output	value	and	simply	compute	
𝑜 𝑣 = 𝜎 ∑ 𝑊 𝑢 → 𝑣 𝑜 𝑢�

Á→]∈¼

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)
𝑢

𝑣

𝑣ÂÁX

Parameters:

• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]
Activations:

• 𝜎:ℝ → ℝ, for	example
• 𝜎 𝑧 = 𝑠𝑖𝑔𝑛 𝑧 or	𝜎 𝑧 = L

Lyz{|(QÅ)
• 𝜎 𝑧 = ReLU 𝑧 = max(0, 𝑧)

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

32

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¯

𝑣)
𝑢

𝑣

𝑣ÂÁX

𝑥L

𝑥I

𝑥¯

𝑥)

⋯

𝑓º »,¼ ,½,𝑾 𝒙

33

Deep	learning
Generalize	to	hierarchy	of	transformations	of	the	input,	
learned	end-to-end	jointly	with	the	predictor.

𝑓𝑾(𝒙) 	= 𝑓F 𝑓FQL 𝑓FQI …𝑓L 𝒙 …

𝑓L 𝒙 = 𝜎 𝑾 𝟏 𝒙

𝑓I 𝒙 = 𝜎 𝑾 𝟐 𝑓L(𝒙)

Neural	Nets	as	Feature	Learning

• Can	think	of	hidden	layer	as	“features”	𝜙(𝑥),	then	a	linear	
predictor	based	on	𝒘.𝜙 𝒙
• “Feature	Engineering”	approach:	design	𝜙(⋅) based	on	
domain	knowledge
• “Deep	Learning”	approach:	learn	features	from	data
• Multilayer	networks	with	non-linear	activations

o more	and	more	complex	features

𝑣L

𝑣I

𝑣¯

𝜙 𝑥 L

𝜙 𝑥 ¬

𝑥L

𝑥I

𝑥)
⋯

𝑣ÂÁX⋯

34

⋯

Slide	credit:	Nati Srebro

35

Multi-Layer	Feature	Learning

Slide	credit:	Nati Srebro

More	knowledge	or	more	learning

Expert	knowledge:
full	specific	knowledge

Expert	Systems
(no	data	at	all)

no	free	lunch

more	data	à

Use	expert	knowledge	to	
construct	𝜙 𝑥 or	𝐾(𝑥, 𝑥�),	
then	use,	eg SVM,	on	𝜙(𝑥)

“Deep	Learning”:
use	very	simple	raw	
features	as	input,	
learn	good	features	
using	deep	neural	net

36Slide	credit:	Nati Srebro

Neural	networks as	hypothesis	class

• Hypothesis	class	specified	by:
o Graph	G(V,E)
o Activation	function	𝜎
o Weights	𝐖,	with	weight	W[𝑢 → 𝑣] for	each	edge	𝑢 → 𝑣 ∈ 𝐸

ℋ = 	𝑓º »,¼ ,½,𝐖	|	𝑾: 𝐸 → ℝ	
• Expressive	power:	

	𝑓	 	𝑓	𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑡𝑖𝑚𝑒	𝑇	} ⊆ ℋº »,¼ ,`1Ñ[with	 𝐸 = 𝑂 𝑇I

• Computation:	empirical	risk	minimization

𝐖Ó = argmin
Ã

Gℓ 𝑓º »,¼ ,½,𝑾 𝒙 𝒊 , 𝑦 1
J

1KL
o Highly	non-convex	problem,	even	if	𝑙𝑜𝑠𝑠 ℓ	is	convex
o Hard	to	minimize	over	even	tiny	neural	networks	are	hard

Based	on	architecture	and	fixed

37

So	how	do	we	learn?

𝑾Ô = argmin
Ã

Gℓ 𝑓º »,¼ ,½,𝑾 𝒙 𝒊 , 𝑦 1
J

1KL

• Stochastic	gradient	descent:	for	random	 𝒙 𝒊 , 𝑦 1 ∈ 𝑆
𝑾(XyL) ← 𝑾 X − 𝜂(X)𝛻ℓ 𝑓º »,¼ ,½,𝑾 𝒕 𝒙 𝒊 , 𝑦 1

(Even	though	its	not	convex)

• How	do	we	efficiently	calculate
𝛻ℓ 𝑓º »,¼ ,½,𝑾 𝒕 𝒙 𝒊 , 𝑦 1 ?
o Karl	will	tell	you!	

• Now	a	brief	detour	into	history	and	resurrection	of	NNs

39

Imagenet challenge	– object	classification

40

Object	detection

Slide	credit:	David	McAllester

History	of	Neural	Networks
• 1940s-70s:

o Inspired	by	learning	in	the	brain,	and	as	a	model	for	the	brain	(Pitts,	Hebb,	and	others)
o Various	models,	directed	and	undirected,	different	activation	and	learning	rules
o Perceptron	Rule	(Rosenblatt),	Problem	of	XOR,	Multilayer	perceptron	(Minksy and	Papert)
o Backpropagation (Werbos 1975)

• 1980s-early	1990s:
o Practical	Backprop (Rumelhart,	Hinton	et	al	1986)	and	SGD	(Bottou)
o Relationship	to	distributed	computing;	“Connectionism”
o Initial	empirical	success

• 1990s-2000s:
o Lost	favor	to	implicit	linear	methods:	SVM,	Boosting

• 2000-2010s:
o revival	of	interest	(CIFAR	groups)
o ca.	2005:	layer-wise	pretraining of	deepish nets
o progress	in	speech	and	vision	with	deep	neural	nets

• 2010s:
o Computational	advances	allow	training	HUGE	networks
o …and	also	a	few	new	tricks
o Krizhevsky et	al.	win	ImageNet
o Empirical	success	and	renewed	interest

41

Deep	learning	- today

State	of	the	art	performance	in	several	tasks	and	are	
actively	deployed	in	real	systems

o Computer	vision
o Speech	recognition
o Machine	translation
o Dialog	systems
o Computer	games	
o Information	retrieval

42

