Day 6: Neural networks,
backpropagation

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

25 June 2018

TOYOTA
TECHNOLOGICAL

n INSTITUTE
AT CHICAGO

Schedule

* 9:00am-10:25am — Lecture 6.a: Review of week 1,
introduction to neural networks

e 10:30am-11:30am — Invited Talk - Greg Durett (also the
TTIC colloquium talk)

e 11:30am-12:30pm — Lunch
e 12:30pm-2:00pm — Lecture 6.b: Backpropagation
* 2:00pm-5:00pm — Programming

Review of week 1

Supervised learning — key questions

e Data: what kind of data can we
get? how much data can we get?

Data

* Model: what is the correct model
for my data? — want to minimize
the effort put into this question!

* Training: what resources -
computation/memory - does the
algorithm need to estimate the
model f?

Algorithm

e Testing: how well will f perform
when deployed? what is the
computational/memory
requirement during deployment?

Linear regression

Input x € X c RY, output y € R, want to learn f: X - R
Training data S = {(x(i),y(i)):i = 1,2, ...,N}

Parameterize candidate f: X’ — R by linear functions,
H ={x->w.x:we€RY

Estimate w by minimizing loss on training data

w = argmln JES(w): = Z(W x® — y(‘))

o J&5(w) is convex inw = m|n|m|ze]SS(w) by setting gradient to 0
o Bus*(w) = XL, (w. x® — y(l))x(l)
o Closed form solutionw = (X' X) " 1Xy

* Can get non-linear functions by mapping x = ¢(x) and doing
linear regression on ¢ (x)

Overfitting

* For same amount of data, < 05 | ~e= Training error
more complex models (0 Test error
. . Be;]
(e.g., higher degree polynomials) 0.2 \
. 3 \
overfit more 3
c 0.1 \
e or need more data to fit more — S

complex models | 5 10 15

* complexity & number of parameters

Model selection

* m model classes {H, H5, ..., H,, }
* S = Strain YU Svar Y Stest

Train on S;4;y to pick best f, € H,

Pick f* based on validation loss on S, 4;

Evaluate test loss LStest(f*)

Regularization

* Complexity of model class can also be controlled by
norm of parameters — smaller range of values allowed

* Regularization for linear regression
argmin /2> (w) + A|lw
w

argmin /2> (w) + A|lw
w

2
2

1

* Again do model selection to pick A—using S,,4; or cross-

validation

Classification

* OQutput y € U takes discrete set of values, e.g., Y = {0,1} or
Y ={-1,1}or Y = {spam,nospam}

o Unlike regression, label-values do not have meaning

e Classifiers divide the space of input X (often R%) to
“regions” where each region is assigned a label

* Non-parametric models

o k-nearest neighbors — regions
defined based on nearest neighbors

o decision trees — structured
rectangular regions

* Linear models — classifier regions
are halfspaces

Classification — logistic regression

Logistic loss

£(f (x),y) = log(1 + exp(—f (x)y))
X =R Y={-11}5={(x®,y®)i=12, .., N}

£(f (),)

Linear model f(x) = f,,(x) =w.x

Output classifier y(x) = sign(w. x)

Empirical risk minimization

w = argminz log (1 + exp(—w. x(i)y(i)))
Yoo

0

fx)y -

ope . . _ _ 1 0:8
Probabilistic formulation: Pr(y = 1|x) = PP i
Multi-class generalization: Y = {1,2, ..., m} :z

exp(—wy.x) R

Pr(ylx) - Zy, exp(—wy/.x)

Can again get non-linear decision boundaries by mapping x = ¢(x)

Classification — maximum margin classifier

Separable data

* Original formulation
y(i)w_ x@

W = argmax min
weRd L lwl|

e Fixing ||lw|| =1 | |
W = argmax min y(‘)(w. x(‘)) s.t. |lw|l =1
w l

e Fixing min y®Pw.x® =1
l

W = argmin ||w|? s.t. Vi, y®w.x®D)>1
w

Slack variables for non-separable data

W = argmin [WlZ +4 3, & st Vi, y®@(w.x®) =1 ¢
w,{¢;=0}

= argmin ||w||* +A }; max (0 1— (l)(w x(l)))
w,{¢$;=0}

Kernel trick

« Using representor theoremw = YV g;x®

min ||w]||? + Az max(0,1 — y @O w. x(i))
w
i
= Brglgk BTGP + AZ max(0,1 — y®(Gp);)
l

G € RV*N with G;; = xV. x is called the gram matrix
» Optimization depends on x(*) only through G;; = x(®. x)

* For prediction w.x = }; 3; x@_ x, we again only need x® . x
* Function K(x,x") = x.x" is called the Kernel

* When learning non-linear classifiers using feature transformations x = ¢ (x)
and fi, (x) = w. ¢ (x)
o Classifier fully specified in terms of Ky (x, x") = K(¢(x), p(x"))

o ¢(x) itself can be very very high dimensional (maybe even infinite
dimensional)

10
1

Optimization
ERM+regularization optimization problem

N
@ = argmin JA(w): = z ew. p(x@),y@) + 2w
W i=1

If J4(w) is convex in w, then W is optimum if and only if gradient at W is
0,i.e, VJ&(Ww) =0

Gradient descent: start with initialization w® and iteratively update
Cwttl = wt — ntvjél(wt)
o where VJ¢(wh) = 3, 7e(wt. p(x@D),y D) + AV ||wi|]
Stochastic gradient descent
o use gradients from only one example
o witl = wt — 771: ﬁ(i)]é(wt)
0 whereﬁ(i)jﬁ(wf) = ve(wh ¢p(xD),yD) + AV ||wt|| for a random
sample (x®, y ()

11

Other classification models

Optimal unrestricted predictor

o Regression + squared loss=2> f**(x) = E|y|x]

o Classification + 0-1 loss 2 y**(x) = argmax. Pr(y = c|x)
Discriminative models: directly model Pr(y|x), e.g., logistic regression

Generative models: model full joint distribution Pr(y, x) =
Pr(x|y) Pr(y)
Why generative models?
o One conditional might be simpler to model with prior knowledge,
e.g., compare specifying Pr(image|digit = 1) vs
Pr(digit = 1|image)
o Naturally handles missing data
Two examples of generative models
o Naive Bayes classifier
o Hidden Markov model

12

Other classifiers

* Naive Bayes classifier: with d features x = [x4, x5, ..., X4| where each
X1, X5, ..., X4 can take one of K values = C K¢ parameters

o NB assumption: features are independent given class y = C K d params.

Pr(xy, Xz, ., Xg|y) = Pr(x,|y) Pr(x;|y)..Pr(xq|y) = [14=1 Pr(xk|y)
o Training amounts to averaging samples across classes

* Hidden Markov model: variable length input/observations
{x1, X5, ..., X} (€.8., words) and variable length output/state

V1, Y2 -, ¥m} (e.g., tags)

o HMM assumption: a) current state conditioned on immediate previous
state is conditionally independent of all other variables, and (b) current
observation conditioned on current state is conditionally independent of
all other variables.

m
Pr(xy, X2, vy Xy Y1, Y25 s Ym) = Pr(y;) Pr(x|y) 1_[Pr(yilyi-1) Pr(yilxy)
k=2

o Parameters estimated using MLE dynamic programming

13

Today

Introduction to neural networks

Backpropagation

14

Graph notation

‘ General variables

can be input variables like x4, x5, ... x4
prediction y

or any intermediate computation (we will see
examples soon)

z; denotes computation z3; = a(w1z; + W, 2,)
for some “activation” function o (specified
apriori)

15

Linear classifier

X1

X2

X3 f(x)=1(w.x +wy, = 0)

Xd

1 MecCullock and Pitts 1943 — introduced the linear threshold “neuron”.
) I l . 1 W_ *'_ T Outpat

B.lologlcal ana Iogy.. |) =
single neuron — stimuli T A
reinforce synaptic v
connections

Slide credits: Nati Srebro, David McAllester

Shallow learning

* We already saw how to use
linear models to get
non-linear decision boundaries ?™x

e Feature transform: map x € R¢ ™)
14
to ¢(x) € R4 and use $(0); @

fw(x) = Ww.p(x)
* Shallow learning: hand-crafted
and non-hierarchical ¢

o Polynomial regression with
squared or logistic loss, ¢(x), = xP

o Kernel SVM: K(x,x") = ¢p(x).p(x")

f(x) =
1(w. p(x) = 0)

Slide credit: Nati Srebro 17

Combining Linear Units

z1 =1(x; —x, > 0)

f(x) =1(z; + 2, > 0)

* The network represents the function
flx) = (x1 and not(xz)) or (xz and not(xl))
* Not a linear function of x

Slide credit: Nati Srebro

18

Combining Linear Units

z1=1w1. x> 0)
W11 !

s
NN L

f(X) = 1(W121 + WzZz = O)

Z, = 1(wy.x > 0)

19

Feed-Forward Neural Networks

Figure credit: Nati Srebro

20

Feed-Forward Neural Networks

z[1] = o(X; WD), 1] x;)

f(x) = a(Z;WP[jlz[j])

21

Feed-Forward Neural Networks

22

Feed-Forward Neural Networks

23

Feed-Forward Neural Networks

f(x) = a(Z;WP[jlz[j])

Z[d1] - U(Zj W(l)[i» d1] xj)

24

Feed-Forward Neural Networks

25

Feed-Forward Neural Networks

fc (V,E),a,w(x)

Architecture:

* Directed Acyclic Graph G (V, E). Units (neurons) indexed by vertices in V.

Slide credit: Nati Srebro

26

Feed-Forward Neural Networks

fc (V,E),a,w(x)

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;

Slide credit: Nati Srebro 27

Feed-Forward Neural Networks

fc (V,E),a,w(x)

Architecture:
* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;
* Each edge u — v has weight W|u — v]
* Pre-activation a|v| = Y, peg W[u — v]olu]

Slide credit: Nati Srebro)8

Feed-Forward Neural Networks

fc (V,E),a,w(x)

Architecture:
* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;
* Each edge u — v has weight W|u — v]
* Pre-activation a|v| = Y, peg W[u — v]olu]
e Outputvalue o|v|=ag(alv])

Slide credit: Nati Srebro 29

Feed-Forward Neural Networks

Vour JIE (V,E),G,W(x)

Architecture:
* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;
* Each edge u — v has weight W|u — v]
* Pre-activation a[v] =), ,cg W[u — v]o[u]
* Outputvalue olv]=a(alv])
o “Output Unit” v, €V, fr(x) = alvyy:l

30

Feed-Forward Neural Networks

Vour JIE (V,E),a,w(x)

Some textbooks/convention don’t make the
distinction between pre-activation and
output value and simply compute
olv] = 0(Xusver Wlu - v]o[u])

Architecture:
* Directed Acyclic Graph G(V,E). Units (neurons d by vertices in V.
* “Input Units” v; ...v4 € V : no incoming s have value o[v;] = x;
* Each edge u — v has weight W|u — v]
* Pre-activation a[v] =), ,cg W[u — v]o[u]
* Outputvalue olv]=a(alv])
« “Output Unit” v,y €V, fr (X) = a[Vyyt]

31

Feed-Forward Neural Networks

) /¢ (V,E),a,w(x)

Parameters:
* Each edge u — v has weight W|u — v]

Activations:
« 0:R - R, for example
. 1
* 0(z) =sign(z)oro(z) = 1+exp(—z)

* 0(z) = ReLU(z) = max(0, z)

32

Feed-Forward Neural Networks

% few.p).ow(x)

fo(x) = U(W(z)ﬁ (x))

fi(x) = c(WWx)

Deep learning
Generalize to hierarchy of transformations of the input,

learned end-to-end jointly with the predictor.

fwx) =f1 (fL—l(fL—Z(---fl(x))))

33

Neural Nets as Feature Learning

* Can think of hidden layer as “features” ¢(x), then a linear
predictor based on w. ¢p(x)

* “Feature Engineering” approach: design ¢(-) based on
domain knowledge

* “Deep Learning” approach: learn features from data

* Multilayer networks with non-linear activations
o more and more complex features

Slide credit: Nati Srebro

34

Multi-Layer Feature Learning

Slide credit: Nati Srebro

ion

Low-Level
Feature

Mid-Level
Feature

High-Level
el

Feature

Trainable
Classifier

35

More knowledge or more learning

“Deep Learning”:

Use expert knowledge to use very simple raw
construct ¢p(x) or K(x,x"), features as input,
then use, eg SVM, on ¢(x) | learn good features

using deep neural net

Expert knowledge:
full specific knowledge

A X

more data =

Expert Systems no free lunch

(no data at all)

Slide credit: Nati Srebro 36

Neural networks as hypothesis class

* Hypothesis class specified b
o Graph G(V,E)
o Activation function o

o Weights W, with weight W|u — v] foreachedgeu - v € E
H = {fG(V,E),a,W |W:E - R}

T» Based on architecture and fixed

* Expressive power:
{f | f computable intime T } € H¢y g)sign With |[E| = 0(T?)

 Computation: empirical risk ml\i,nimization

W = arg mmi/n z t (f G(V,E),O',W(x(i))' y (i))
i=1

o Highly non-convex problem, even if loss € is convex
o Hard to minimize over even tiny neural networks are hard

37

So how do we |learn?

N
W = argmin > £(fow 0w (x®),y0)
=1

 Stochastic gradient descent: for random (x(i),y(i)) ES
WD) « w® _ pOpyp (fow s omw®(x®), ya))
(Even though its not convex)

* How do we efficiently calcl_JIate
Vi (f cw.5r.ow®(x?), y(‘))?

o Karl will tell you!

* Now a brief detour into history and resurrection of NNs

Imagenet challenge — object classification
1000 kinds of objects.

Research

Revolution of Depth

28.2
152 layers
A
zz layers | | 19 layers I I

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ISVRC'12 ISVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

ICCV

Kaming Me, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learming for image Recognition”. arXiv 2014

(slide from Kaiming He's recent presentation)

39

Object detection

PASCAL VOC Object Detection

bicycle | bus | car | motorbike | person | 20 class average
2007 36.9 [23.2]34.6 27.6 21.3 17.1
2008 42.0 [23.2]32.0 38.6 42.0 22.9
2009 46.8 [43.8]37.2 42.0 41.5 27.9
2010 54.3 [54.2(49.1 51.6 A7.5 36.8
2011 58.1 |57.6(54.4 58.3 51.6 40.9
2012 54.5 |57.1[49.3 59.4 46.1 41.1
2013 DNN | 56.3 [51.4|48.7| 598 44.4 43.2
2014 DNN 63.8
2015 ResNet | 88.4 |[86.3[87.8| 89.6 90.9 83.8
2016 ResNet 86

Slide credit: David McAllester

40

History of Neural Networks

1940s-70s:
o Inspired by learning in the brain, and as a model for the brain (Pitts, Hebb, and others)
o Various models, directed and undirected, different activation and learning rules
o Perceptron Rule (Rosenblatt), Problem of XOR, Multilayer perceptron (Minksy and Papert)
o Backpropagation (Werbos 1975)

1980s-early 1990s:
o Practical Backprop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
o Relationship to distributed computing; “Connectionism”
o Initial empirical success

1990s-2000s:

o Lost favor to implicit linear methods: SVM, Boosting

2000-2010s:
o revival of interest (CIFAR groups)
o ca. 2005: layer-wise pretraining of deepish nets
o progress in speech and vision with deep neural nets

2010s:

o Computational advances allow training HUGE networks
o ..and also a few new tricks

o Krizhevsky et al. win ImageNet

o Empirical success and renewed interest

Deep learning - today

State of the art performance in several tasks and are
actively deployed in real systems

o Computer vision

o Speech recognition

o Machine translation

o Dialog systems

o Computer games

o Information retrieval

