# Day 6: Neural networks, backpropagation

#### Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

25 June 2018









# Schedule

- 9:00am-10:25am Lecture 6.a: Review of week 1, introduction to neural networks
- 10:30am-11:30am Invited Talk Greg Durett (also the TTIC colloquium talk)
- 11:30am-12:30pm Lunch
- 12:30pm-2:00pm Lecture 6.b: Backpropagation
- 2:00pm-5:00pm Programming

# **Review of week 1**

# Supervised learning – key questions



- Data: what kind of data can we get? how much data can we get?
- Model: what is the correct model for my data? – want to minimize the effort put into this question!
- Training: what resources computation/memory does the algorithm need to estimate the model  $\hat{f}$ ?
- Testing: how well will *f̂* perform when deployed? what is the computational/memory requirement during deployment?

### Linear regression

- Input  $x \in \mathcal{X} \subset \mathbb{R}^d$ , output  $y \in \mathbb{R}$ , want to learn  $f: \mathcal{X} \to \mathbb{R}$
- Training data  $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$
- Parameterize candidate  $f: \mathcal{X} \to \mathbb{R}$  by linear functions,  $\mathcal{H} = \{ \mathbf{x} \to \mathbf{w}, \mathbf{x}; \mathbf{w} \in \mathbb{R}^d \}$
- Estimate w by minimizing loss on training data

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{LS}(\boldsymbol{w}) := \sum_{i=1}^{N} \left( \boldsymbol{w}. \, \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)} \right)^{2}$$

•  $J_S^{LS}(w)$  is convex in  $w \rightarrow$  minimize  $J_S^{LS}(w)$  by setting gradient to 0

 $\circ \nabla_{\boldsymbol{w}} J_{S}^{LS}(\boldsymbol{w}) = \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)}) \boldsymbol{x}^{(i)}$ 

• Closed form solution  $\widehat{\boldsymbol{w}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}\boldsymbol{y}$ 

• Can get non-linear functions by mapping  $x \to \phi(x)$  and doing linear regression on  $\phi(x)$ 

# Overfitting

- For same amount of data, more complex models (e.g., higher degree polynomials) overfit more
- or need more data to fit more complex models
- complexity  $\approx$  number of parameters

#### Model selection

- m model classes  $\{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_m\}$
- $S = S_{train} \cup S_{val} \cup S_{test}$
- Train on  $S_{train}$  to pick best  $\hat{f}_r \in \mathcal{H}_r$
- Pick  $\hat{f}^*$  based on validation loss on  $S_{val}$
- Evaluate test loss  $L_{S_{test}}(\hat{f}^*)$





# Regularization

- Complexity of model class can also be controlled by norm of parameters – smaller range of values allowed
- Regularization for linear regression argmin  $J_{S}^{LS}(w) + \lambda ||w||_{2}^{2}$

$$\underset{w}{\operatorname{argmin}} J_{S}^{LS}(w) + \lambda \|w\|_{1}$$

• Again do model selection to pick  $\lambda$ - using  $S_{val}$  or cross-validation

# Classification

• Output  $y \in \mathcal{Y}$  takes discrete set of values, e.g.,  $\mathcal{Y} = \{0,1\}$  or  $\mathcal{Y} = \{-1,1\}$  or  $\mathcal{Y} = \{spam, nospam\}$ 

Unlike regression, label-values do not have meaning

- Classifiers divide the space of input  $\mathcal{X}$  (often  $\mathbb{R}^d$ ) to "regions" where each region is assigned a label
- Non-parametric models
  - k-nearest neighbors regions
     defined based on nearest neighbors
  - decision trees structured rectangular regions
- Linear models classifier regions are halfspaces



# Classification – logistic regression

Logistic loss  $\ell(f(\mathbf{x}), y) = \log(1 + \exp(-f(\mathbf{x})y))$ 

- $\mathcal{X} = \mathbb{R}^d$ ,  $\mathcal{Y} = \{-1, 1\}, S = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}): i = 1, 2, ..., N\}$
- Linear model  $f(x) = f_w(x) = w.x$
- Output classifier  $\hat{y}(x) = \operatorname{sign}(w, x)$
- Empirical risk minimization

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i} \log \left( 1 + \exp(-\boldsymbol{w}, \boldsymbol{x}^{(i)} \boldsymbol{y}^{(i)}) \right)$$

- Probabilistic formulation:  $Pr(y = 1 | x) = \frac{1}{1 + exp(-w.x)}$
- Multi-class generalization:  $\mathcal{Y} = \{1, 2, ..., m\}$
- $\Pr(y|\mathbf{x}) = \frac{\exp(-w_{y}x)}{\sum_{y'} \exp(-w_{y'}x)}$
- Can again get non-linear decision boundaries by mapping  $x o \phi(x)$





# Classification – maximum margin classifier

 $x_2$ 

#### Separable data

- Original formulation
- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{argmax}} \min_{i} \frac{y^{(i)} \boldsymbol{w}. \boldsymbol{x}^{(i)}}{\|\boldsymbol{w}\|}$
- Fixing ||w|| = 1 $\widehat{w} = \underset{w}{\operatorname{argmax}} \min_{i} y^{(i)} (w, x^{(i)}) \text{ s.t. } ||w|| = 1$
- Fixing  $\min_{i} y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} = 1$
- $\widetilde{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \text{ s.t. } \forall i, y^{(i)}(\boldsymbol{w}, \boldsymbol{x}^{(i)}) \ge 1$

Slack variables for non-separable data

 $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}, \{\xi_i \ge 0\}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 + \lambda \sum_i \xi_i \quad \text{s.t.} \quad \forall i, y^{(i)} (\boldsymbol{w}, \boldsymbol{x}^{(i)}) \ge 1 - \xi_i$ 

 $= \underset{w,\{\xi_i \ge 0\}}{\operatorname{argmin}} \|w\|^2 + \lambda \sum_i \max(0, 1 - y^{(i)}(w, x^{(i)}))$ 

 $\dot{x}_1$ 

# Kernel trick

• Using representor theorem  $m{w} = \sum_{i=1}^N eta_i m{x}^{(i)}$ 

$$\min_{\boldsymbol{w}} \|\boldsymbol{w}\|^2 + \lambda \sum_{i} \max(0, 1 - y^{(i)} \boldsymbol{w}. \boldsymbol{x}^{(i)})$$
$$\equiv \min_{\boldsymbol{\beta} \in \mathbb{R}^N} \boldsymbol{\beta}^\top \boldsymbol{G} \boldsymbol{\beta} + \lambda \sum_{i} \max(0, 1 - y^{(i)} (\boldsymbol{G} \boldsymbol{\beta})_i)$$

 $\boldsymbol{G} \in \mathbb{R}^{N \times N}$  with  $G_{ij} = \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)}$  is called the gram matrix

- Optimization depends on  $x^{(i)}$  only through  $G_{ij} = x^{(i)} \cdot x^{(j)}$
- For prediction  $\widehat{w}$ .  $x = \sum_i \beta_i x^{(i)}$ . x, we again only need  $x^{(i)}$ . x
- Function  $K(\mathbf{x}, \mathbf{x}') = \mathbf{x} \cdot \mathbf{x}'$  is called the Kernel
- When learning non-linear classifiers using feature transformations  $x \to \phi(x)$ and  $f_w(x) = w. \phi(x)$ 
  - Classifier fully specified in terms of  $K_{\phi}(\mathbf{x}, \mathbf{x}') = K(\phi(\mathbf{x}), \phi(\mathbf{x}'))$
  - $\phi(x)$  itself can be very very high dimensional (maybe even infinite dimensional)

# Optimization

• ERM+regularization optimization problem

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{\lambda}(\boldsymbol{w}) := \sum_{i=1}^{N} \ell(\boldsymbol{w}. \phi(\boldsymbol{x}^{(i)}), y^{(i)}) + \lambda \|\boldsymbol{w}\|$$

- If  $J_S^{\lambda}(w)$  is convex in w, then  $\hat{w}$  is optimum if and only if gradient at  $\hat{w}$  is 0, i.e.,  $\nabla J_S^{\lambda}(\hat{w}) = 0$
- Stochastic gradient descent
  - $_{\circ}$  use gradients from only one example
  - $\circ \boldsymbol{w^{t+1}} = \boldsymbol{w^t} \eta^t \, \widehat{\nabla}^{(i)} J_S^{\lambda}(\boldsymbol{w^t})$
  - where  $\widehat{\nabla}^{(i)} J_S^{\lambda}(\boldsymbol{w^t}) = \nabla \ell(\boldsymbol{w^t}, \phi(\boldsymbol{x^{(i)}}), y^{(i)}) + \lambda \nabla \| \boldsymbol{w^t} \|$  for a random sample  $(\boldsymbol{x^{(i)}}, y^{(i)})$

# Other classification models

- Optimal unrestricted predictor
  - Regression + squared loss  $\rightarrow f^{**}(\mathbf{x}) = \mathbf{E}[y|\mathbf{x}]$
  - Classification + 0-1 loss  $\rightarrow \hat{y}^{**}(x) = \operatorname{argmax}_{c} \Pr(y = c | x)$
- Discriminative models: directly model Pr(y|x), e.g., logistic regression
- Generative models: model full joint distribution Pr(y, x) = Pr(x|y) Pr(y)
- Why generative models?
  - One conditional might be simpler to model with prior knowledge, e.g., compare specifying Pr(image|digit = 1) vs Pr(digit = 1|image)
  - $_{\circ}~$  Naturally handles missing data
- Two examples of generative models
  - Naïve Bayes classifier
  - Hidden Markov model

# Other classifiers

- Naïve Bayes classifier: with d features  $x = [x_1, x_2, ..., x_d]$  where each  $x_1, x_2, ..., x_d$  can take one of K values  $\rightarrow C K^d$  parameters
  - **NB** assumption: features are independent given class  $y \rightarrow C K d$  params.

 $Pr(x_1, x_2, ..., x_d | y) = Pr(x_1 | y) Pr(x_2 | y) ... Pr(x_d | y) = \prod_{k=1}^d Pr(x_k | y)$ 

- Training amounts to averaging samples across classes
- Hidden Markov model: variable length input/observations
   {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>m</sub>} (e.g., words) and variable length output/state
   {y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>m</sub>} (e.g., tags)
  - HMM assumption: a) current state conditioned on immediate previous state is conditionally independent of all other variables, and (b) current observation conditioned on current state is conditionally independent of all other variables.

 $\Pr(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_m) = \Pr(y_1) \Pr(x_1 | y_1) \prod_{k=2}^m \Pr(y_k | y_{k-1}) \Pr(y_k | x_k)$ 

Parameters estimated using MLE dynamic programming

# Today

#### Introduction to neural networks

Backpropagation

# Graph notation



- can be input variables like  $x_1, x_2, \dots x_d$
- prediction  $\hat{y}$
- or any intermediate computation (we will see examples soon)



denotes computation  $z_3 = \sigma(w_1z_1 + w_2z_2)$ for some "activation" function  $\sigma$  (specified apriori)

# Linear classifier



McCullock and Pitts 1943 — introduced the linear threshold "neuron".

• Biological analogy: single neuron – stimuli reinforce synaptic connections



# Shallow learning

- We already saw how to use linear models to get non-linear decision boundaries
- Feature transform: map  $x \in \mathbb{R}^d$ to  $\phi(x) \in \mathbb{R}^{d'}$  and use

 $f_{w}(\boldsymbol{x}) = \boldsymbol{w}.\,\phi(\boldsymbol{x})$ 

- Shallow learning: hand-crafted and non-hierarchical  $\phi$ 
  - $_{\circ}\,$  Polynomial regression with squared or logistic loss,  $\phi(x)_p=x^p$

• Kernel SVM: 
$$K(\boldsymbol{x}, \boldsymbol{x}') = \phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{x}')$$



# **Combining Linear Units**



- The network represents the function  $f(x) = (x_1 \text{ and } not(x_2)) \text{ or } (x_2 \text{ and } not(x_1))$
- Not a linear function of *x*

# **Combining Linear Units**





#### Figure credit: Nati Srebro













#### Architecture:

• Directed Acyclic Graph G(V, E). Units (neurons) indexed by vertices in V.



#### Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
  - "Input Units"  $v_1 \dots v_d \in V$ : no incoming edges have value  $o[v_i] = x_i$



#### Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
  - "Input Units"  $v_1 \dots v_d \in V$ : no incoming edges have value  $o[v_i] = x_i$
  - Each edge  $u \rightarrow v$  has weight  $W[u \rightarrow v]$ 
    - Pre-activation  $a[v] = \sum_{u \to v \in E} W[u \to v] o[u]$

#### Slide credit: Nati Srebro



#### Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
  - "Input Units"  $v_1 \dots v_d \in V$ : no incoming edges have value  $o[v_i] = x_i$
  - Each edge  $u \rightarrow v$  has weight  $W[u \rightarrow v]$ 
    - Pre-activation  $a[v] = \sum_{u \to v \in E} W[u \to v] o[u]$
    - Output value  $o[v] = \sigma(a[v])$

#### Slide credit: Nati Srebro



#### Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
  - "Input Units"  $v_1 \dots v_d \in V$ : no incoming edges have value  $o[v_i] = x_i$
  - Each edge  $u \to v$  has weight  $W[u \to v]$ 
    - Pre-activation  $a[v] = \sum_{u \to v \in E} W[u \to v] o[u]$
    - Output value  $o[v] = \sigma(a[v])$
  - "Output Unit"  $v_{out} \in V$ ,  $f_W(\mathbf{x}) = a[v_{out}]$





#### **Parameters:**

• Each edge  $u \rightarrow v$  has weight  $W[u \rightarrow v]$ 

#### **Activations:**

- $\sigma: \mathbb{R} \to \mathbb{R}$ , for example
  - $\sigma(z) = sign(z) \text{ or } \sigma(z) = \frac{1}{1 + exp(-z)}$
  - $\sigma(z) = \operatorname{ReLU}(z) = \max(0, z)$



#### Deep learning

Generalize to hierarchy of transformations of the input, learned end-to-end jointly with the predictor.

$$f_{W}(\mathbf{x}) = f_{L}(f_{L-1}(f_{L-2}(\dots f_{1}(\mathbf{x}) \dots)))$$

### Neural Nets as Feature Learning



- Can think of hidden layer as "features"  $\phi(x)$ , then a linear predictor based on  $w. \phi(x)$
- "Feature Engineering" approach: design  $\phi(\cdot)$  based on domain knowledge
- "Deep Learning" approach: learn features from data
- Multilayer networks with non-linear activations

   more and more complex features

# Multi-Layer Feature Learning



Slide credit: Nati Srebro

# More knowledge or more learning



### Neural networks as hypothesis class

- Hypothesis class specified by:
  - o Graph G(V,E)

Based on architecture and fixed

- $\circ$  Activation function  $\sigma$
- Weights **W**, with weight  $\mathbf{W}[u \to v]$  for each edge  $u \to v \in E$  $\mathcal{H} = \{ f_{G(V,E),\sigma,\mathbf{W}} \mid \mathbf{W}: E \to \mathbb{R} \}$
- Expressive power:

 $\{ f \mid f \text{ computable in time } T \} \subseteq \mathcal{H}_{G(V,E),sign} \text{ with } |E| = O(T^2)$ 

• Computation: empirical risk minimization

$$\widehat{\mathbf{W}} = \arg\min_{W} \sum_{i=1}^{N} \ell(f_{G(V,E),\sigma,W}(\mathbf{x}^{(i)}), y^{(i)})$$

- Highly non-convex problem, even if loss ℓ is convex
- Hard to minimize over even tiny neural networks are hard

# So how do we learn?

$$\widehat{\boldsymbol{W}} = \arg\min_{\boldsymbol{W}} \sum_{i=1}^{N} \ell(f_{G(\boldsymbol{V},\boldsymbol{E}),\sigma,\boldsymbol{W}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)})$$

• Stochastic gradient descent: for random  $(\mathbf{x}^{(i)}, y^{(i)}) \in S$  $W^{(t+1)} \leftarrow W^{(t)} - \eta^{(t)} \nabla \ell \left( f_{G(V,E),\sigma,W^{(t)}}(\mathbf{x}^{(i)}), y^{(i)} \right)$ 

(Even though its not convex)

- How do we efficiently calculate  $\nabla \ell \left( f_{G(V,E),\sigma,W^{(t)}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$ ?  $\circ$  Karl will tell you!
- Now a brief detour into history and resurrection of NNs

# Imagenet challenge – object classification

#### 1000 kinds of objects.



(slide from Kaiming He's recent presentation)

# Object detection

#### PASCAL VOC Object Detection

|             | bicycle | bus  | $\operatorname{car}$ | motorbike | person | 20 class average |
|-------------|---------|------|----------------------|-----------|--------|------------------|
| 2007        | 36.9    | 23.2 | 34.6                 | 27.6      | 21.3   | 17.1             |
| 2008        | 42.0    | 23.2 | 32.0                 | 38.6      | 42.0   | 22.9             |
| 2009        | 46.8    | 43.8 | 37.2                 | 42.0      | 41.5   | 27.9             |
| 2010        | 54.3    | 54.2 | 49.1                 | 51.6      | 47.5   | 36.8             |
| 2011        | 58.1    | 57.6 | 54.4                 | 58.3      | 51.6   | 40.9             |
| 2012        | 54.5    | 57.1 | 49.3                 | 59.4      | 46.1   | 41.1             |
| 2013 DNN    | 56.3    | 51.4 | 48.7                 | 59.8      | 44.4   | 43.2             |
| 2014 DNN    |         |      |                      |           |        | 63.8             |
| 2015 ResNet | 88.4    | 86.3 | 87.8                 | 89.6      | 90.9   | 83.8             |
| 2016 ResNet |         |      |                      |           |        | 86               |

Slide credit: David McAllester

# History of Neural Networks

#### • 1940s-70s:

- o Inspired by learning in the brain, and as a model for the brain (Pitts, Hebb, and others)
- Various models, directed and undirected, different activation and learning rules
- Perceptron Rule (Rosenblatt), Problem of XOR, Multilayer perceptron (Minksy and Papert)
- Backpropagation (Werbos 1975)
- 1980s-early 1990s:
  - Practical Backprop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
  - Relationship to distributed computing; "Connectionism"
  - Initial empirical success
- 1990s-2000s:
  - Lost favor to implicit linear methods: SVM, Boosting
- 2000-2010s:
  - revival of interest (CIFAR groups)
  - ca. 2005: layer-wise pretraining of deepish nets
  - progress in speech and vision with deep neural nets
- 2010s:
  - Computational advances allow training HUGE networks
  - ...and also a few new tricks
  - Krizhevsky et al. win ImageNet
  - Empirical success and renewed interest

# Deep learning - today

State of the art performance in several tasks and are actively deployed in real systems

- Computer vision
- Speech recognition
- Machine translation
- Dialog systems
- Computer games
- Information retrieval