Day 5: Generative models, structured classification

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

22 June 2018

Topics so far

- Linear regression
- Classification
 - $_{\circ}$ nearest neighbors, decision trees, logistic regression
- Yesterday
 - Maximum margin classifiers, Kernel trick
- Today
 - $_{\circ}$ Quick review of probability
 - Generative models naive Bayes classifier
 - Structured Prediction conditional random fields

Several slides adapted from David Sontag who in turn credits Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate

Bayesian/probabilistic learning

- Uses probability to model data and/or quantify uncertainties in prediction
 - Systematic framework to incorporate prior knowledge
 - Framework for composing and reasoning about uncertainity
 - What is the confidence in the prediction given observations so far?
- Model assumptions need not hold (and often do not hold) in reality
 - even so, many probabilistic models work really well in practice

Quick overview of random variables

• Random variables: A variable about which we (may) have uncertainty

• e.g., W = weather tomorrow, or T = temperature

- For all random variables X domain \mathcal{X} of X is the set of values X can take
- Discrete random variables: probability distribution is a table

$$\Pr(W = sun) = 0.6$$

• For discrete RV X, $\forall x \in \mathcal{X}$, $\Pr(X = x) \ge 0$ and $\sum_{x \in \mathcal{X}} \Pr(X = x) = 1$

- **Continuous random** *X* with domain $\mathcal{X} \subseteq \mathbb{R}$
 - Cumulative distribution function $F_X(t) = \Pr(X \le t)$
 - again $F_X(t) \in [0,1]$ and also $F_X(-\infty) = 0, F_X(+\infty) = 1$

• **Probability density function** (if exists) $P_X(t) = \frac{dF_X(t)}{dt}$

Is always positive, but can be greater than 1

Quick overview of random variables

• Expectation

Discrete RV
$$\mathbf{E}[f(X)] = \sum_{x \in \mathcal{X}} f(x) \operatorname{Pr}(X = x)$$

- Mean E[X]
- Variance $\mathbf{E}[(X \mathbf{E}[X])^2]$

Joint distributions

• Joint distribution of random variables $X_1, X_2, ..., X_d$ is defined for all $x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, ..., x_d \in \mathcal{X}_d$ $p(x_1, x_2, ..., x_d) = \Pr(X_1 = x_1, X_2 = x_2, ..., X_d = x_d)$

P(T,W)			
Т	W	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

- How may numbers needed for d variables each having domain of K values?
 - K^d!! Too many numbers, usually some assumption is made to reduce number of probabilities

Marginal distribution

- Sub-tables obtained by elimination of variables
- Probability distribution of a subset of variables

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Marginal distribution

- Sub-tables obtained by elimination of variables
- Probability distribution of a subset of variables
- Given: joint distribution $p(x_1, x_2, \dots, x_d) = \Pr(X_1 = x_1, X_2 = x_2, \dots, X_d = x_d)$ for $x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, \dots, x_d \in \mathcal{X}_d$
- Say we want get a marginal of just x_1, x_2, x_5 , that is we want to get $p(x_1, x_2, x_4) = \Pr(X_1 = x_1, X_2 = x_2, X_4 = x_4)$
- This can be obtained by mariginalizing

$$p(x_1, x_2, x_4) = \sum_{z_3 \in \mathcal{X}_3} \sum_{z_5 \in \mathcal{X}_5} \dots \sum_{z_d \in \mathcal{X}_d} p(x_1, x_2, z_3, x_4, z_5, \dots, z_d)$$

Conditioning

• Random variables X and Y with domains X and Y $Pr(X = x | Y = y) = \frac{Pr(X = x, Y = y)}{Pr(Y = y)}$

 Probability distributions of subset of variables with fixed values of others

Conditional Distributions

$$\begin{bmatrix} P(W|T = hot) \\ \hline W & P \\ \hline sun & 0.8 \\ \hline rain & 0.2 \end{bmatrix}$$
$$P(W|T = cold) \\ \hline W & P \\ \hline sun & 0.4 \\ \hline rain & 0.6 \end{bmatrix}$$

P(W|T)

Joint Distribution

P(T,W)			
Т	W	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Conditioning

- Random variables X and Y with domains X and \mathcal{Y} $\Pr(X = x | Y = y) = \frac{\Pr(X = x, Y = y)}{\Pr(Y = y)}$
- Conditional expectation

$$\mathbf{E}[f(X)|Y = y] = \sum_{x \in \mathcal{X}} f(x) \Pr(X = x|Y = y)$$

- $h(y) = \mathbf{E}[f(X)|Y = y]$ is a function of y
- h(Y) is a random variable with distribution given by Pr(h(Y) = h(y)) = Pr(Y = y)

Product rule

• Going from conditional distribution to joint distribution $Pr(X = x | Y = y) = \frac{Pr(X = x, Y = y)}{Pr(Y = y)}$ \uparrow

$$Pr(X = x, Y = y) = Pr(Y = y) Pr(X = x|Y = y)$$

What about thee variables?

$$\Pr(X_1 = x_1, X_2 = x_2, X_3 = x_3) =$$

 $\Pr(X_1 = x_1) \Pr(X_2 = x_2 | X_1 = x_1) \Pr(X_3 = x_3 | X_1 = x_1, X_2 = x_2)$

• More generally, $Pr(X_1 = x_1, X_2 = x_2, \dots, X_d = x_d)$ $= Pr(X_1 = x_1) \prod_{k=2}^{d} Pr(X_k = x_k | X_{k-1} = x_{k-1}, X_{k-2} = x_{k-2}, \dots, X_1 = x_1)$

Optimal unrestricted classifier

- *C* class classification problem $\mathcal{Y} = \{1, 2, ..., C\}$
- Population distribution Let $(x, y) \sim D$

c

• Consider the population 0-1 loss of classifier $\hat{y}(x)$

$$L(\hat{y}) \triangleq \mathbf{E}_{x,y} [\mathbf{1}[y \neq \hat{y}(x)]] = \Pr(y \neq \hat{y}(x))$$

Risk of
assifier
 $\hat{y}(x)$

$$Pr(y \neq \hat{y}(x)|x)$$

 $L(\hat{y}|\boldsymbol{x})$

Check that this is minimized for

$$\hat{y}(x) = \underset{c}{\operatorname{argmax}} \Pr(y = c | x)$$

- $\Pr(y \neq \hat{y}(x)|x) = 1 \Pr(y = \hat{y}(x)|x)$
- Optimal unrestricted classifier or Bayes optimal classifier

$$\hat{y}^{**}(\boldsymbol{x}) = \operatorname*{argmax}_{c} \Pr(\boldsymbol{y} = c | \boldsymbol{x})$$

Generative vs discriminative models

- Recall optimal unrestricted predictor for following cases
 - Regression+squared loss $\rightarrow f^{**}(x) = \mathbf{E}[y|x]$
 - Classification+ 0-1 loss $\rightarrow \hat{y}^{**}(x) = \operatorname{argmax} \Pr(y = c | x)$
- Non-probabilistic approach: don't deal with probabilities, just estimate f(x) directly to the data.
- Discriminative models: Estimate/infer the conditional density Pr(y|x) \circ Typically uses a parametric model $f_W(x)$ of Pr(y|x)
- Generative models: Estimate the full joint probability density Pr(y, x)
 - Normalize to find the conditional density Pr(y|x)
 - Specify models for Pr(x, y) or [Pr(x|y) and Pr(y)]
 - o Why? In two slides!

Bayes rule

• Optimal classifier $\hat{y}^{**}(x) = \underset{c}{\operatorname{argmax}} \Pr(y = c | x)$

• Bayes rule: Pr(x, y) = Pr(y|x) Pr(x) = Pr(x|y) Pr(y)

$$\hat{y}^{**}(x) = \operatorname{argmax} \Pr(y = c | x)$$

$$= \operatorname{argmax}_{c} \frac{\Pr(x | y = c) \Pr(y = c)}{\Pr(x)}$$

$$= \operatorname{argmax}_{c} \Pr(x | y = c) \Pr(y = c)$$

Bayes rule

Optimal classifier

$$\hat{y}^{**}(x) = \underset{c}{\operatorname{argmax}} \Pr(y = c | x)$$
$$= \underset{c}{\operatorname{argmax}} \Pr(x | y = c) \Pr(y = c)$$

- Why is this helpful?
 - One conditional might be tricky to model with prior knowledge but the other simple
 - \circ e.g., say we want to specify a model for digit recognition

 compare specifying Pr(image|digit = 1) vs Pr(digit = 1|image) Generative model for classification

$$\operatorname{argmax}_{c} \Pr(y = c | x)$$

=
$$\operatorname{argmax}_{c} \Pr(x | y = c) \Pr(y = c)$$

$$_{c}$$

- C class classification with binary features $x \in \mathbb{R}^d$ and $y \in \{1, 2, ..., C\}$
- Want to specify $Pr(x|y) = Pr(x_1, x_2, ..., x_d|y)$
- If each of $x_1, x_2, ..., x_d$ can take one of K values. How many parameters to specify Pr(x|y)?
 - $\circ C K^d$!! Too many

Naive Bayes assumption

Specifying $Pr(x|y) = Pr(x_1, x_2, ..., x_d|y)$ requires *C* K^d

Naive Bayes assumption:

features are independent given class y

• e.g., for two features

 $Pr(x_1, x_2|y) = Pr(x_1|y) Pr(x_2|y)$

more generally,

 $Pr(x_1, x_2, \dots, x_d | y) = Pr(x_1 | y) Pr(x_2 | y) \dots Pr(x_d | y)$ $= \prod_{k=1}^d Pr(x_k | y)$

 number of parameters if each of x₁, x₂, ..., x_d can take one of K values?

 $\circ C K d$

Naive Bayes classifier

• Naive Bayes assumption: features are independent given class:

 $\Pr(x_1, x_2, ..., x_d | y) = \prod_{k=1}^d \Pr(x_k | y)$

- C classes $\mathcal{Y} = \{1, 2, \dots, C\}$ d binary feature $\mathcal{X} = \{0, 1\}^d$
- Model parameters: specify from prior knowledge and/or learn from data
 - ∘ Priors $Pr(y = c) \rightarrow \# parameters C 1$
 - Conditional probabilities $Pr(x_k = 1 | y = c) \rightarrow \#$ parameters Cd
 - if $x_1, x_2, ..., x_m$ takes one of K discrete values rather than binary \rightarrow #parameters (K-1)Cd
 - if $x_1, x_2, ..., x_m$ are continuous, additionally model $\Pr(x_k | y = c)$ as some parametric distribution, like Gaussian $\Pr(x_k | y = c) \sim \mathcal{N}(\mu_{k,c}, \sigma)$, and estimate the parameters $(\mu_{k,c}, \sigma)$ from data
- Classifier rule:

$$\hat{y}_{NB}(x) = \underset{c}{\operatorname{argmax}} \operatorname{Pr}(x_1, x_2, \dots, x_d | y = c) \operatorname{Pr}(y = c)$$
$$= \underset{c}{\operatorname{argmax}} \operatorname{Pr}(y = c) \prod_{k=1}^{d} \operatorname{Pr}(x_k | y = c)$$

Digit recognizer

Input: pixel grids

Slide credit: David Sontag

What has to be learned?

MLE for parameters of NB

- Training dataset $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$
- Maximum likelihood estimation for naive Bayes with discrete features and labels
- Assume *S* has iid examples

 \circ Prior: what is the probability of observing label y

$$\Pr(y = c) = \frac{\sum_{i=1}^{N} \mathbf{1}[y^{(i)} = c]}{N} \sum_{c' = i}^{N} \sum_{i=1}^{N} \frac{\sum_{i=1}^{N} \mathbf{1}[y^{(i)} = c]}{N}$$

$$\Pr(x_k = z_k | Y = c) = \frac{\sum_{i=1}^{N} \mathbb{1}[x_k^{(i)} = z_k, y^{(i)} = c]}{\sum_{i=1}^{N} \mathbb{1}[y^{(i)} = c]}$$

MLE for parameters of NB

 Training amounts to, for each of the classes, averaging all of the examples together:

Smoothing for parameters of NB

- Training dataset $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$
- Maximum likelihood estimation for naive Bayes with discrete features and labels
- Assume *S* has iid examples

 \circ Prior: what is the probability of observing label y

$$\Pr(y = c) = \frac{\sum_{i} \mathbf{1} [y^{(i)} = c]}{N}$$

$$\Pr(x_k = z_k | Y = c) = \frac{\sum_i \mathbb{1} \left[x_k^{(i)} = z_k, y^{(i)} = c \right]}{\sum_i \mathbb{1} \left[y^{(i)} = c \right]}$$

Smoothing for parameters of NB

- Training dataset $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$
- Maximum likelihood estimation for naive Bayes with discrete features and labels
- Assume *S* has iid examples

 \circ Prior: what is the probability of observing label y

$$\Pr(y=c) = \frac{\sum_{i} \mathbf{1} [y^{(i)} = c]}{N}$$

$$\Pr(x_k = z_k | Y = c) = \frac{\sum_i \mathbb{1} \left[x_k^{(i)} = z_k, y^{(i)} = c \right] + \epsilon}{\sum_i \mathbb{1} \left[y^{(i)} = c \right]}$$

Smoothing for parameters of NB

- Training dataset $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$
- Maximum likelihood estimation for naive Bayes with discrete features and labels
- Assume *S* has iid examples

 \circ Prior: what is the probability of observing label y

$$\Pr(y=c) = \frac{\sum_{i} \mathbf{1} [y^{(i)} = c]}{N}$$

$$\Pr(x_{k} = z_{k} | Y = c) = \frac{\sum_{i} 1 \left[x_{k}^{(i)} = z_{k}, y^{(i)} = c \right] + \epsilon}{\sum_{i} 1 \left[x_{k}^{(i)} = z_{k'}, y^{(i)} = c \right] + \sum_{z_{k'}} \epsilon}$$

Missing features

One of the key strengths of Bayesian approaches is that they can naturally handle missing data

- What happens if we don't have value of some feature $x_k^{(l)}$
 - e.g., applicants credit history unknown
 - e.g., some medical tests not performed
- How to compute $\Pr(x_1, x_2, ..., x_{j-1}, ?, x_{j+1}, ..., x_d | y)$?
 - o e.g., three coin tosses E = {H,?,T}
 o ⇒ Pr(E) = Pr({H,H,T}) + Pr({H,T,T})

More generally

$$\Pr(x_1, x_2, \dots, x_{j-1}, ?, x_{j+1}, \dots, x_d | y) = \sum_{z_j} \Pr(x_1, x_2, \dots, x_{j-1}, z_j, x_{j+1}, \dots, x_d | y)$$

Slide credit: David Sontag

Missing features in naive Bayes

 $\Pr(x_1, x_2, \dots, x_{j-1}, ?, x_{j+1}, \dots, x_d | y)$

$$= \sum_{z_j} \Pr(x_1, x_2, \dots, x_{j-1}, z_j, x_{j+1}, \dots, x_d | y)$$

$$= \sum_{z_j} \left[\Pr(z_j | y) \prod_{k \neq j} \Pr(x_k | y) \right]$$

$$= \prod_{k\neq j} \Pr(x_k|y) \sum_{z_j} \Pr(z_j|y)$$

$$= \prod_{k\neq j} \Pr(x_k|y)$$

- Simply ignore the missing values and compute likelihood based only observed features
- no need to fill-in or explicitly model missing values

Naive Bayes

- Generative model
 - \circ Model $\Pr(\boldsymbol{x}|\boldsymbol{y})$ and $\Pr(\boldsymbol{y})$
- Prediction: models the full joint distribution and uses Bayes rule to get Pr(y|x)
- Can generate data given label
- Naturally handles missing data

Logistic Regression

- Discriminative model

 Model Pr(y|x)
- Prediction: directly models what we want Pr(y|x)

- Cannot generate data
- Cannot handle missing data easily