SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

Karl Stratos

June 21, 2018

Tangent: Some Loose Ends in Logistic Regression

- Polynomial feature expansion in logistic regression
- Regularization in logistic regression
- Classification metrics

Increasing the Complexity of Logistic Regression

- The predicted probability of a logistic regressor is $p\left(1 \mid \boldsymbol{x}, \boldsymbol{w}, w_{0}\right)=\sigma\left(\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}\right)$.
- Linear decision boundary

$$
\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}=0 \quad \Leftrightarrow \quad p(1 \mid \cdot)=\frac{1}{2}
$$

Polynomial Feature Expansion

- We can use the same polynomial feature expansion that we used in linear regression.
- For instance, with $d=2$ dimensions

$$
p\left(1 \mid \boldsymbol{x}, \boldsymbol{w}, w_{0}\right)=\sigma\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}\right)
$$

- Nonlinear decision boundary

$$
w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}=0 \quad \Leftrightarrow \quad p(1 \mid \cdot)=\frac{1}{2}
$$

Tangent: Some Loose Ends in Logistic Regression

- Polynomial feature expansion in logistic regression
- Regularization in logistic regression
- Classification metrics

Regularization in Logistic Regression

- Same idea as in linear regression: penalize the squared l_{2} or l_{1} norm of the model parameter to prevent the model from becoming too "confident" about the training data.
- Squared l_{2} regularization with hyperparameter σ^{2}

$$
-\sum_{i} \log p\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{w}\right)+\frac{1}{2 \sigma^{2}}\|\boldsymbol{w}\|^{2}
$$

Tangent: Some Loose Ends in Logistic Regression

- Polynomial feature expansion in logistic regression
- Regularization in logistic regression
- Classification metrics

Label Imbalance Problem

- Suppose most of the labels are $y=0$, say 99.9% of the time.
- In this scenario, classification accuracy is not a useful metric.

$$
\frac{t p+t n}{t p+f p+t n+f n}
$$

- Just by guessing 0 all the time, we get accuracy 99.9% !

Label Imbalance Problem

- Suppose most of the labels are $y=0$, say 99.9% of the time.
- In this scenario, classification accuracy is not a useful metric.

$$
\frac{t p+t n}{t p+f p+t n+f n}
$$

- Just by guessing 0 all the time, we get accuracy 99.9% !
- Consider other metrics, such as
- Precision: Out of your $y=1$ predictions, how many were actually 1 ?

$$
\frac{t p}{t p+f p}
$$

- Recall: Out of points that are labeled 1, how many did you label as $y=1$?

$$
\frac{t p}{t p+f n}
$$

More Metrics

- F1: Harmonic mean of precision and recall

$$
2 \frac{\text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}
$$

- PR curve: change threshold and plot precision/recall

- ROC curve: change threshold and plot false/true positive rates

Transition Slide

Back to SVMs

Review: Basic Support Vector Machines (SVMs)

- Training data: $S=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ where $y^{(i)} \in\{ \pm 1\}$ is a binary label of $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$.
- S is assumed to be linearly separable: there exists \boldsymbol{w} such that $y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}>0$ for all $i=1 \ldots n$.
- Find a separator that maximizes the margin on S :

Review: Basic Support Vector Machines (SVMs)

- Training data: $S=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ where $y^{(i)} \in\{ \pm 1\}$ is a binary label of $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$.
- S is assumed to be linearly separable: there exists \boldsymbol{w} such that $y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}>0$ for all $i=1 \ldots n$.
- Find a separator that maximizes the margin on S :

$$
\begin{aligned}
\boldsymbol{w}_{S}^{\mathrm{svm}} & :=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \max } \min _{i=1}^{n} y^{(i)} \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \cdot \boldsymbol{x}^{(i)} \\
& \stackrel{\text { wlog }}{\equiv} \underset{\boldsymbol{w} \in \mathbb{R}^{d}:\|\boldsymbol{w}\|=1}{\arg \max } \min _{i=1}^{n} y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \\
& \propto \underset{\underset{\boldsymbol{w} \in \mathbb{R}^{d}:}{\arg } \quad\|\boldsymbol{w}\|^{2}}{y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 \forall i}
\end{aligned}
$$

... Equivalently, find a separator with the minimum l_{2} norm.

Review: Inner Product Formulation

Using the representer theorem

$$
\exists \beta_{1} \ldots \beta_{n} \in \mathbb{R}: \quad \boldsymbol{w}_{S}^{\mathrm{svm}}=\sum_{i=1}^{n} \beta_{i} \boldsymbol{x}^{(i)}
$$

we can convert the original problem into an equivalent problem

$$
\begin{aligned}
& \min _{\beta_{1} \ldots \beta_{n} \in \mathbb{R}} \\
& \sum_{i, j=1}^{n} \beta_{i} \beta_{j} \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)} \\
& \text { subject to } y^{(i)} \sum_{j=1}^{n} \beta_{j} \boldsymbol{x}^{(j)} \cdot \boldsymbol{x}^{(i)} \geq 1 \quad \forall i=1 \ldots n
\end{aligned}
$$

where the only information from data we need for training is the inner product between input points.

- Likewise at test time: $\boldsymbol{w}_{S}^{\mathrm{svm}} \cdot \boldsymbol{x}=\sum_{i=1: \beta_{i} \neq 0}^{n} \beta_{i} \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}$
- Allows for the use of kernels (later).

Today

- How to handle non-separable data
- Connection to a convex surrogate loss on the 0-1 loss
- How to handle multi-class classification
- The kernel trick

Overview

Non-Separable Data
Multi-Class Classification Kernel Trick

Introduce Slack Variables

$$
\begin{array}{cl}
\min _{\boldsymbol{w} \in \mathbb{R}^{d}}\|\boldsymbol{w}\|^{2} & \\
\text { subject to } y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 & \forall i=1 \ldots n \\
\Downarrow & \\
\min _{\boldsymbol{w} \in \mathbb{R}^{d}, \xi_{1} \ldots \xi_{n} \in \mathbb{R}}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{n} \xi_{i} & \forall i=1 \ldots n \\
\text { subject to } y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1-\xi_{i} & \forall i=1 \ldots n \\
\xi_{i} \geq 0 &
\end{array}
$$

Unconstrained Formulation

"Soft" SVM solution

$$
\boldsymbol{w}_{S}^{\mathrm{soft}}, \xi_{1}^{*} \ldots \xi_{n}^{*}:=\underset{\boldsymbol{w} \in \mathbb{R}^{d}, \xi_{1} \ldots \xi_{n} \in \mathbb{R}}{\arg \min }\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{n} \xi_{i}
$$

with constraints $\xi_{i} \geq \max \left(0,1-y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)$ for all $i=1 \ldots n$.

Note that $\xi_{i}^{*}=\max \left(0,1-y^{(i)} \boldsymbol{w}_{S}^{\text {soft }} \cdot \boldsymbol{x}^{(i)}\right)$, so

$$
\boldsymbol{w}_{S}^{\mathrm{soft}}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{n} \max \left(0,1-y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)
$$

No constraints :) Convex but not differentiable, can still be optimized by subgradient descent

Soft SVMs as Empirical Risk Minimization

- What we really want: minimize the $0-1$ loss

$$
\boldsymbol{w}_{S}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \sum_{i=1}^{n}\left[\left[y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \leq 0\right]\right]
$$

where $[[\tau]]$ is 1 if τ is true and 0 otherwise

- Difficult to optimize (neither convex nor differentiable)
- Instead minimize the hinge loss

$$
\boldsymbol{w}_{S}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \sum_{i=1}^{n} \underbrace{\max \left(0,1-y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)}_{\operatorname{hinge}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)}
$$

which is a convex upper bound on the $0-1$ loss

A Big Picture of Binary Classification

Both logistic regression and soft SVMs are l_{2}-regularized minimization of the 0-1 loss by convex surrogates.

Generalized Representer Theorem

Claim. Let $l: \mathbb{R}^{n} \rightarrow[0, \infty)$ be any function and define

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{w}\|^{2}+l\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{w} \cdot \boldsymbol{x}^{(n)}\right)
$$

Then $\boldsymbol{w}^{*}=\sum_{i=1}^{n} \beta_{i} \boldsymbol{x}^{(i)}$ for some $\beta_{1} \ldots \beta_{n} \in \mathbb{R}$.
Proof. Same as in the hard SVM case

Thus we can simiarly derive an inner product formulation of the soft SVM solution (will come back to this later):

$$
\boldsymbol{w}_{S}^{\mathrm{soft}}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{w}\|^{2}+\underbrace{\sum_{i=1}^{n} \max \left(0,1-y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)}_{l\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{w} \cdot \boldsymbol{x}^{(n)}\right)}
$$

Overview

Non-Separable Data
Multi-Class Classification Kernel Trick

One-Vs-All

- Training data: $S=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ where $y^{(i)} \in\{1 \ldots m\}$ is the label of $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$.
- Parameters: $\boldsymbol{w}^{y} \in \mathbb{R}^{d}$ for each $y \in\{1 \ldots m\}$
- "One-vs-all" soft SVM objective: optimize

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{d}, \xi_{1} \ldots \xi_{n} \in \mathbb{R}}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{n} \xi_{i}
$$

such that $\xi_{i} \geq 0$ for all $i=1 \ldots n$ and

$$
\boldsymbol{w}^{y^{(i)}} \cdot \boldsymbol{x}^{(i)}-\boldsymbol{w}^{y} \cdot \boldsymbol{x}^{(i)} \geq 1-\xi_{i}
$$

for all $i=1 \ldots n$ and $y \in\{1 \ldots m\}$ such that $y \neq y^{(i)}$

Unconstrained Formulation

$$
\begin{aligned}
\boldsymbol{w}_{S}^{\text {one-vs-all }} & =\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{w}\|^{2}+ \\
& \sum_{i=1}^{n} \sum_{y \in\{1 \ldots m\}: y \neq y^{(i)}} \max \left(0,1+\boldsymbol{w}^{y} \cdot \boldsymbol{x}^{(i)}-\boldsymbol{w}^{y^{(i)}} \cdot \boldsymbol{x}^{(i)}\right)
\end{aligned}
$$

One-Vs-One

- "One-vs-one" soft SVM objective: optimize

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{d}, \xi_{1} \ldots \xi_{n} \in \mathbb{R}}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{n} \xi_{i}
$$

such that $\xi_{i} \geq 0$ for all $i=1 \ldots n$ and

$$
\boldsymbol{w}^{y^{(i)}} \cdot \boldsymbol{x}^{(i)}-\max _{y \in\{1 \ldots m\}: y \neq y^{(i)}} \boldsymbol{w}^{y} \cdot \boldsymbol{x}^{(i)} \geq 1-\xi_{i}
$$

for all $i=1 \ldots n$

- Unconstrained Formulation

$$
\begin{aligned}
& \boldsymbol{w}_{S}^{\text {one-vs-all }}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{w}\|^{2}+ \\
& \sum_{i=1}^{n} \max \left(0,1+\max _{y \in\{1 \ldots m\}: y \neq y^{(i)}} \boldsymbol{w}^{y} \cdot \boldsymbol{x}^{(i)}-\boldsymbol{w}^{y^{(i)}} \cdot \boldsymbol{x}^{(i)}\right)
\end{aligned}
$$

Overview

Non-Separable Data
Multi-Class Classification
Kernel Trick

Inner Product Formulation of Soft SVM (Binary)

- $G \in \mathbb{R}^{n \times n}:$ a symmetric matrix with $G_{i, j}=x^{(i)} \cdot x^{(j)}$ (i.e., the Gram matrix).

$$
\begin{aligned}
\boldsymbol{\beta}^{*} & =\underset{\boldsymbol{\beta} \in \mathbb{R}^{n}}{\arg \min } \boldsymbol{\beta}^{\top} G \boldsymbol{\beta}+\sum_{i=1}^{n} \max \left(0,1-y^{(i)} \boldsymbol{\beta}^{\top} G_{i}\right) \\
\boldsymbol{w}_{S}^{\mathrm{soft}} & =\sum_{i=1}^{n} \boldsymbol{\beta}_{i}^{*} \boldsymbol{x}^{(i)}
\end{aligned}
$$

- User manual

1. Calculate $G_{i, j}=x^{(i)} \cdot x^{(j)}$ for every $i, j=1 \ldots n$.
2. Find $\boldsymbol{\beta}^{*}$ using G (e.g., by subgradient descent).
3. Test time: given a new point \boldsymbol{x} to classify, return

$$
\operatorname{sign}\left(\sum_{i=1: \boldsymbol{\beta}_{i}^{*} \neq 0}^{n} \boldsymbol{\beta}_{i}^{*} x^{(i)} \cdot x\right)
$$

Recall: Polynomial Feature Expansion

- Idea: transform input by $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$ to allow the linear model to better fit the data.

- Example: expansion by a degree $p=2$ polynomial with bias $c=1$

$$
\phi^{\operatorname{poly}(2,1)}\left(x_{1} \ldots x_{d}\right)=\left(\left(x_{i}^{2}\right)_{i},\left(\sqrt{2} x_{i} x_{j}\right)_{i<j},\left(\sqrt{2} x_{i}\right)_{i}, 1\right)
$$

- Computationally expensive: time to calculate feature expansion $O\left(d^{p}\right)$ exponential in p

But Computing Inner Product is Easy!

- Inner product between two points \boldsymbol{x} and \boldsymbol{y} in the feature space

$$
\begin{aligned}
\phi^{\mathrm{poly}(2,1)}(\boldsymbol{x}) \cdot \phi^{\mathrm{poly}(2,1)}(\boldsymbol{y}) & =\sum_{i, j} x_{i} x_{j} y_{i} y_{j}+2 \sum_{i} x_{i} y_{i}+1 \\
& =\left(\boldsymbol{x}^{\top} \boldsymbol{y}+1\right)^{2}
\end{aligned}
$$

- Instead of computing $O\left(d^{2}\right)$ terms in each $\phi^{\operatorname{poly}(2,1)}(\boldsymbol{x})$ and $\phi^{\text {poly(2,1) }}(\boldsymbol{y})$ and then taking a dot product, we can just

1. Compute $z=\boldsymbol{x}^{\top} \boldsymbol{y}(O(d)$-time operation $)$
2. Square $z+1(O(1)$-time operation $)$

Kernel Trick

- Idea: when all we need is inner product, we can do "implicit" feature expansion by a kernel function without ever computing the explicit feature expansion
- Kernel function $K(\boldsymbol{x}, \boldsymbol{y})$ is any function that defines pairwise similarity between two data points such that

$$
K(\boldsymbol{x}, \boldsymbol{y})=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})
$$

for some input mapping $\phi: \mathbb{R}^{d} \rightarrow$?

- Applicable beyond SVMs (e.g., kernel PCA)

Degree- p Polynomial Kernel

Parameters: degree p, bias c

$$
K^{\operatorname{poly}(p, c)}(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{\top} \boldsymbol{y}+c\right)^{p}
$$

We saw that the underlying feature expansion is some degree p polynomial

Radial Basis Function (RBF) Kernel

Parameter: $\sigma^{2}>0$

$$
K^{\mathrm{RBF}\left(\sigma^{2}\right)}(\boldsymbol{x}, \boldsymbol{y})=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{2 \sigma^{2}}\right)
$$

What is the underlying feature expansion? For $\sigma^{2}=1$,

$$
\begin{aligned}
K^{\mathrm{RBF}\left(\sigma^{2}\right)}(\boldsymbol{x}, \boldsymbol{y}) & =C \sum_{p=0}^{\infty} \frac{1}{p!}\left(\boldsymbol{x}^{\top} \boldsymbol{y}\right)^{p} \\
& =C \sum_{p=0}^{\infty} \frac{1}{p!} \phi^{\mathrm{poly}(p, 0)}(\boldsymbol{x}) \cdot \phi^{\mathrm{poly}(p, 0)}(\boldsymbol{y})
\end{aligned}
$$

The underlying feature space is infinite-dimensional.

Summary of Kernel Trick for Soft SVM

- Before ("linear kernel")

1. Calculate $G_{i, j}=\boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)}$ for every $i, j=1 \ldots n$.
2. Find $\boldsymbol{\beta}^{*}$ using G (e.g., by subgradient descent).
3. Test time: given a new point \boldsymbol{x} to classify, return

$$
\operatorname{sign}\left(\sum_{i=1: \beta_{i}^{*} \neq 0}^{n} \beta_{i}^{*} x^{(i)} \cdot x\right)
$$

- Choose some kernel $K(\boldsymbol{x}, \boldsymbol{y})$.

1. Calculate $G_{i, j}=K\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}\right)$ for every $i, j=1 \ldots n$.
2. Find $\boldsymbol{\beta}^{*}$ using G (e.g., by subgradient descent).
3. Test time: given a new point \boldsymbol{x} to classify, return

$$
\operatorname{sign}\left(\sum_{i=1: \beta_{i}^{*} \neq 0}^{n} \beta_{i}^{*} K\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}\right)\right)
$$

Aside: Kernel Approximation

- Kernel trick is clever but requires the inner product formulation. This requires storing the $n \times n$ Gram matrix: not scalable.
- Kernel approximation: approximate the implicit feature expansion defined under a kernel, and use that expansion directly
- Rahimi and Recht (2007): $z(\boldsymbol{x}) \in \mathbb{R}^{N}$ where $z_{i}(\boldsymbol{x}):=\sqrt{2 / N} \cos \left(\mu_{i} \cdot \boldsymbol{x}+b_{i}\right)$ given by $\mu_{i} \sim \mathcal{N}\left(0, I_{d}\right)$ and $b_{i} \sim \mathcal{U}(0,2 \pi)$

$$
\mathbf{E}[z(\boldsymbol{x}) \cdot z(\boldsymbol{y})]=K^{\operatorname{RBF}(1)}(\boldsymbol{x}, \boldsymbol{y})
$$

Use $z(\boldsymbol{x}) \in \mathbb{R}^{N}$ directly (no kernel trick)

Summary

- Soft SVM = hard SVM + slack variables to handle non-separable data
- A unifying framework for SVMs and logistic regression: convex surrogate loss on the 0-1 loss
- SVMs can be naturally extended to handle multi-class classification
- Kernel trick: when training and inference only depend on inner product between data points, we can replace the inner product with a kernel function and perform implicit feature expansion

