
SVMs: Non-Separable Data, Convex Surrogate
Loss, Multi-Class Classification, Kernels

Karl Stratos

June 21, 2018

1 / 33

Tangent: Some Loose Ends in Logistic Regression

I Polynomial feature expansion in logistic regression

I Regularization in logistic regression

I Classification metrics

2 / 33

Increasing the Complexity of Logistic Regression

I The predicted probability of a logistic regressor is
p(1|x,w, w0) = σ(w · x+ w0).

I Linear decision boundary

w · x+ w0 = 0 ⇔ p(1|·) = 1

2

3 / 33

Polynomial Feature Expansion
I We can use the same polynomial feature expansion that we

used in linear regression.

I For instance, with d = 2 dimensions

p(1|x,w, w0) = σ(w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2)

I Nonlinear decision boundary

w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 = 0 ⇔ p(1|·) = 1

2

4 / 33

Tangent: Some Loose Ends in Logistic Regression

I Polynomial feature expansion in logistic regression

I Regularization in logistic regression

I Classification metrics

5 / 33

Regularization in Logistic Regression
I Same idea as in linear regression: penalize the squared l2 or l1

norm of the model parameter to prevent the model from
becoming too “confident” about the training data.

I Squared l2 regularization with hyperparameter σ2

−
∑
i

log p(y(i)|x(i),w) +
1

2σ2
||w||2

6 / 33

Tangent: Some Loose Ends in Logistic Regression

I Polynomial feature expansion in logistic regression

I Regularization in logistic regression

I Classification metrics

7 / 33

Label Imbalance Problem
I Suppose most of the labels are y = 0, say 99.9% of the time.

I In this scenario, classification accuracy is not a useful metric.

tp+ tn

tp+ fp+ tn+ fn

I Just by guessing 0 all the time, we get accuracy 99.9%!

I Consider other metrics, such as
I Precision: Out of your y = 1 predictions, how many were

actually 1?

tp

tp+ fp

I Recall: Out of points that are labeled 1, how many did you
label as y = 1?

tp

tp+ fn

8 / 33

Label Imbalance Problem
I Suppose most of the labels are y = 0, say 99.9% of the time.

I In this scenario, classification accuracy is not a useful metric.

tp+ tn

tp+ fp+ tn+ fn

I Just by guessing 0 all the time, we get accuracy 99.9%!

I Consider other metrics, such as
I Precision: Out of your y = 1 predictions, how many were

actually 1?

tp

tp+ fp

I Recall: Out of points that are labeled 1, how many did you
label as y = 1?

tp

tp+ fn

8 / 33

More Metrics
I F1: Harmonic mean of precision and recall

2
precision · recall
precision+ recall

I PR curve: change threshold and plot precision/recall

I ROC curve: change threshold and plot false/true positive
rates

9 / 33

Transition Slide

Back to SVMs

10 / 33

Review: Basic Support Vector Machines (SVMs)
I Training data: S =

{
(x(i), y(i))

}n
i=1

where y(i) ∈ {±1} is a

binary label of x(i) ∈ Rd.

I S is assumed to be linearly separable: there exists w such
that y(i)w · x(i) > 0 for all i = 1 . . . n.

I Find a separator that maximizes the margin on S:

wsvm
S := argmax

w∈Rd

n
min
i=1

y(i)
w

||w||
· x(i)

wlog
≡ argmax
w∈Rd: ||w||=1

n
min
i=1

y(i)w · x(i)

∝ argmin
w∈Rd:

y(i)w·x(i)≥1 ∀i

||w||2

. . . Equivalently, find a separator with the minimum l2 norm.

11 / 33

Review: Basic Support Vector Machines (SVMs)
I Training data: S =

{
(x(i), y(i))

}n
i=1

where y(i) ∈ {±1} is a

binary label of x(i) ∈ Rd.

I S is assumed to be linearly separable: there exists w such
that y(i)w · x(i) > 0 for all i = 1 . . . n.

I Find a separator that maximizes the margin on S:

wsvm
S := argmax

w∈Rd

n
min
i=1

y(i)
w

||w||
· x(i)

wlog
≡ argmax
w∈Rd: ||w||=1

n
min
i=1

y(i)w · x(i)

∝ argmin
w∈Rd:

y(i)w·x(i)≥1 ∀i

||w||2

. . . Equivalently, find a separator with the minimum l2 norm.

11 / 33

Review: Inner Product Formulation
Using the representer theorem

∃β1 . . . βn ∈ R : wsvm
S =

n∑
i=1

βix
(i)

we can convert the original problem into an equivalent problem

min
β1...βn∈R

n∑
i,j=1

βiβjx
(i) · x(j)

subject to y(i)
n∑
j=1

βjx
(j) · x(i) ≥ 1 ∀i = 1 . . . n

where the only information from data we need for training is the
inner product between input points.

I Likewise at test time: wsvm
S · x =

∑n
i=1: βi 6=0 βix

(i) · x
I Allows for the use of kernels (later).

12 / 33

Today

I How to handle non-separable data
I Connection to a convex surrogate loss on the 0-1 loss

I How to handle multi-class classification

I The kernel trick

13 / 33

Overview

Non-Separable Data

Multi-Class Classification

Kernel Trick

14 / 33

Introduce Slack Variables

min
w∈Rd

||w||2

subject to y(i)w · x(i) ≥ 1 ∀i = 1 . . . n

⇓

min
w∈Rd, ξ1...ξn∈R

||w||2 +
n∑
i=1

ξi

subject to y(i)w · x(i) ≥ 1− ξi ∀i = 1 . . . n

ξi ≥ 0 ∀i = 1 . . . n

15 / 33

Unconstrained Formulation

“Soft” SVM solution

wsoft
S , ξ∗1 . . . ξ

∗
n := argmin

w∈Rd, ξ1...ξn∈R
||w||2 +

n∑
i=1

ξi

with constraints ξi ≥ max
(
0, 1− y(i)w · x(i)

)
for all i = 1 . . . n.

Note that ξ∗i = max
(
0, 1− y(i)wsoft

S · x(i)
)
, so

wsoft
S = argmin

w∈Rd

||w||2 +
n∑
i=1

max
(
0, 1− y(i)w · x(i)

)
No constraints :) Convex but not differentiable, can still be
optimized by subgradient descent

16 / 33

Soft SVMs as Empirical Risk Minimization

I What we really want: minimize the 0-1 loss

w∗S = argmin
w∈Rd

n∑
i=1

[[
y(i)w · x(i) ≤ 0

]]
where [[τ]] is 1 if τ is true and 0 otherwise

I Difficult to optimize (neither convex nor differentiable)

I Instead minimize the hinge loss

w∗S = argmin
w∈Rd

n∑
i=1

max
(
0, 1− y(i)w · x(i)

)
︸ ︷︷ ︸

hinge(w·x(i))

which is a convex upper bound on the 0-1 loss

17 / 33

A Big Picture of Binary Classification

Both logistic regression and soft SVMs are l2-regularized
minimization of the 0-1 loss by convex surrogates.

18 / 33

Generalized Representer Theorem

Claim. Let l : Rn → [0,∞) be any function and define

w∗ = argmin
w∈Rd

||w||2 + l
(
w · x(1), . . . ,w · x(n)

)
Then w∗ =

∑n
i=1 βix

(i) for some β1 . . . βn ∈ R.

Proof. Same as in the hard SVM case

Thus we can simiarly derive an inner product formulation of the
soft SVM solution (will come back to this later):

wsoft
S = argmin

w∈Rd

||w||2 +
n∑
i=1

max
(
0, 1− y(i)w · x(i)

)
︸ ︷︷ ︸

l(w·x(1),...,w·x(n))

19 / 33

Overview

Non-Separable Data

Multi-Class Classification

Kernel Trick

20 / 33

One-Vs-All

I Training data: S =
{
(x(i), y(i))

}n
i=1

where y(i) ∈ {1 . . .m} is

the label of x(i) ∈ Rd.

I Parameters: wy ∈ Rd for each y ∈ {1 . . .m}

I “One-vs-all” soft SVM objective: optimize

min
w∈Rd, ξ1...ξn∈R

||w||2 +
n∑
i=1

ξi

such that ξi ≥ 0 for all i = 1 . . . n and

wy(i) · x(i) −wy · x(i) ≥ 1− ξi

for all i = 1 . . . n and y ∈ {1 . . .m} such that y 6= y(i)

21 / 33

Unconstrained Formulation

wone−vs−all
S = argmin

w∈Rd

||w||2+

n∑
i=1

∑
y∈{1...m}: y 6=y(i)

max
(
0, 1 +wy · x(i) −wy(i) · x(i)

)

22 / 33

One-Vs-One
I “One-vs-one” soft SVM objective: optimize

min
w∈Rd, ξ1...ξn∈R

||w||2 +
n∑
i=1

ξi

such that ξi ≥ 0 for all i = 1 . . . n and

wy(i) · x(i) − max
y∈{1...m}:y 6=y(i)

wy · x(i) ≥ 1− ξi

for all i = 1 . . . n

I Unconstrained Formulation

wone−vs−all
S = argmin

w∈Rd

||w||2+

n∑
i=1

max

(
0, 1 + max

y∈{1...m}: y 6=y(i)
wy · x(i) −wy(i) · x(i)

)
23 / 33

Overview

Non-Separable Data

Multi-Class Classification

Kernel Trick

24 / 33

Inner Product Formulation of Soft SVM (Binary)

I G ∈ Rn×n: a symmetric matrix with Gi,j = x
(i) · x(j) (i.e.,

the Gram matrix).

β∗ = argmin
β∈Rn

β>Gβ +

n∑
i=1

max
(
0, 1− y(i)β>Gi

)
wsoft
S =

n∑
i=1

β∗ix
(i)

I User manual
1. Calculate Gi,j = x

(i) · x(j) for every i, j = 1 . . . n.
2. Find β∗ using G (e.g., by subgradient descent).
3. Test time: given a new point x to classify, return

sign

 n∑
i=1:β∗

i 6=0

β∗ix
(i) · x


25 / 33

Recall: Polynomial Feature Expansion

I Idea: transform input by φ : Rd → RD to allow the linear
model to better fit the data.

I Example: expansion by a degree p = 2 polynomial with bias
c = 1

φpoly(2,1) (x1 . . . xd) =

((
x2i
)
i
,
(√

2xixj

)
i<j

,
(√

2xi

)
i
, 1

)

I Computationally expensive: time to calculate feature
expansion O(dp) exponential in p

26 / 33

But Computing Inner Product is Easy!

I Inner product between two points x and y in the feature space

φpoly(2,1) (x) · φpoly(2,1) (y) =
∑
i,j

xixjyiyj + 2
∑
i

xiyi + 1

=
(
x>y + 1

)2
I Instead of computing O(d2) terms in each φpoly(2,1) (x) and
φpoly(2,1) (y) and then taking a dot product, we can just

1. Compute z = x>y (O(d)-time operation)
2. Square z + 1 (O(1)-time operation)

27 / 33

Kernel Trick

I Idea: when all we need is inner product, we can do “implicit”
feature expansion by a kernel function without ever computing
the explicit feature expansion

I Kernel function K(x,y) is any function that defines pairwise
similarity between two data points such that

K(x,y) = φ(x) · φ(y)

for some input mapping φ : Rd → ?

I Applicable beyond SVMs (e.g., kernel PCA)

28 / 33

Degree-p Polynomial Kernel

Parameters: degree p, bias c

Kpoly(p,c)(x,y) =
(
x>y + c

)p
We saw that the underlying feature expansion is some degree p
polynomial

29 / 33

Radial Basis Function (RBF) Kernel

Parameter: σ2 > 0

KRBF(σ2)(x,y) = exp

(
−||x− y||

2

2σ2

)

What is the underlying feature expansion? For σ2 = 1,

KRBF(σ2)(x,y) = C

∞∑
p=0

1

p!

(
x>y

)p
= C

∞∑
p=0

1

p!
φpoly(p,0) (x) · φpoly(p,0) (y)

The underlying feature space is infinite-dimensional.

30 / 33

Summary of Kernel Trick for Soft SVM

I Before (“linear kernel”)

1. Calculate Gi,j = x
(i) · x(j) for every i, j = 1 . . . n.

2. Find β∗ using G (e.g., by subgradient descent).
3. Test time: given a new point x to classify, return

sign

 n∑
i=1:β∗

i 6=0

β∗i x
(i) · x


I Choose some kernel K(x,y).

1. Calculate Gi,j = K
(
x(i),x(j)

)
for every i, j = 1 . . . n.

2. Find β∗ using G (e.g., by subgradient descent).
3. Test time: given a new point x to classify, return

sign

 n∑
i=1:β∗

i 6=0

β∗iK
(
x(i),x

)
31 / 33

Aside: Kernel Approximation

I Kernel trick is clever but requires the inner product
formulation. This requires storing the n× n Gram matrix: not
scalable.

I Kernel approximation: approximate the implicit feature
expansion defined under a kernel, and use that expansion
directly

I Rahimi and Recht (2007): z(x) ∈ RN where
zi(x) :=

√
2/N cos (µi · x+ bi) given by µi ∼ N (0, Id) and

bi ∼ U(0, 2π)

E [z(x) · z(y)] = KRBF(1)(x,y)

Use z(x) ∈ RN directly (no kernel trick)

32 / 33

Summary

I Soft SVM = hard SVM + slack variables to handle
non-separable data

I A unifying framework for SVMs and logistic regression: convex
surrogate loss on the 0-1 loss

I SVMs can be naturally extended to handle multi-class
classification

I Kernel trick: when training and inference only depend on inner
product between data points, we can replace the inner product
with a kernel function and perform implicit feature expansion

33 / 33

