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Tangent: Some Loose Ends in Logistic Regression

» Polynomial feature expansion in logistic regression
» Regularization in logistic regression

» Classification metrics
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Increasing the Complexity of Logistic Regression

» The predicted probability of a logistic regressor is
p(1|ma w, wO) = U(w cT+ U)(])-

» Linear decision boundary

w-x+wyg=0 & p(1]-) ==
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Polynomial Feature Expansion

» We can use the same polynomial feature expansion that we
used in linear regression.

» For instance, with d = 2 dimensions

p(l@, w,wp) = o(wo + w11 + Wy + W3] + W43)

» Nonlinear decision boundary

1
wo + w11 + wors + wazi +wazy =0 & p(l]:) = 2
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Tangent: Some Loose Ends in Logistic Regression

» Polynomial feature expansion in logistic regression
» Regularization in logistic regression

» Classification metrics
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Regularization in Logistic Regression

» Same idea as in linear regression: penalize the squared Is or [y

norm of the model parameter to prevent the model from
becoming too “confident” about the training data.

» Squared Iy regularization with hyperparameter o

o 1
= togp(y et w) + o [w]|?

ML

02 =0.1

0% =0.01
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Tangent: Some Loose Ends in Logistic Regression

» Polynomial feature expansion in logistic regression
> Regularization in logistic regression

» Classification metrics
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Label Imbalance Problem
» Suppose most of the labels are y = 0, say 99.9% of the time.

» In this scenario, classification accuracy is not a useful metric.
tp +1tn
tp+ fp+tn+ fn

» Just by guessing 0 all the time, we get accuracy 99.9%!
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Label Imbalance Problem
» Suppose most of the labels are y = 0, say 99.9% of the time.

» In this scenario, classification accuracy is not a useful metric.
tp +1tn
tp+ fp+tn+ fn

» Just by guessing 0 all the time, we get accuracy 99.9%!

» Consider other metrics, such as
» Precision: Out of your y = 1 predictions, how many were
actually 17

tp
tp+ fp
» Recall: Out of points that are labeled 1, how many did you
label as y = 17

tp
tp+ fn
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More Metrics

» F1: Harmonic mean of precision and recall

precision - recall

precision + recall

» PR curve: change threshold and plot precision/recall

» ROC curve: change threshold and plot false/true positive
rates

R:
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Transition Slide

Back to SVMs
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Review: Basic Support Vector Machines (SVMs)
> Training data: S = {(zV,y®)}"_ where y® € {£1} isa
binary label of () ¢ R

> S is assumed to be linearly separable: there exists w such
that yWw -2 > 0foralli=1...n.

» Find a separator that maximizes the margin on S:
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Review: Basic Support Vector Machines (SVMs)
> Training data: S = {(zV,y®)}"_ where y® € {£1} isa
binary label of () ¢ R

> S is assumed to be linearly separable: there exists w such
that yWw -2 > 0foralli=1...n.

» Find a separator that maximizes the margin on S:

n

wy™ ;= arg max min y@

W)
werd =1~ |[w]]

wlog n . .
= argmax min yDw.z®
weR: [|w||=1 =1

« argmin ||w|

) ’wERd:
yDw-x(d>1v;

... Equivalently, find a separator with the minimum [y norm.
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Review: Inner Product Formulation
Using the representer theorem

dp1...0peR: wWT™ = Zﬁix(i)

we can convert the original problem into an equivalent problem

mﬁlf R Z pibja!

subject to y(i) Zﬁjw(-j) 2l >1 Vi=1...n
j=1
where the only information from data we need for training is the
inner product between input points.
> Likewise at test time: w¥™ - x = " . 8i£0 By
» Allows for the use of kernels (later).
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Today

» How to handle non-separable data
» Connection to a convex surrogate loss on the 0-1 loss

» How to handle multi-class classification

» The kernel trick
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Overview

Non-Separable Data
Multi-Class Classification
Kernel Trick
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Introduce Slack Variables

. 2
min ||wl|
weRd

subject to yWw - 2@ > 1 Vi=1...n

4

weRe, &...6,€R

n
min fw][*+) &
i=1

subject to yWw - 2@ > 1 — ¢ Vi=1...n
& =0 Vi=1...n
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Unconstrained Formulation

“Soft” SVM solution

n
wSSOft7£T"‘€:L = argmin H’IU||2+251'
weRY, £...6,€ER =1

with constraints & > max (0,1 — y@w - 2®) forall i =1...

Note that £ = max (0,1 — yDwPt . 2®), so
n . .
w?ﬁ:agnmlWMF+§:mM(Q1_y@w.ﬁﬂ)
weR? i=1

No constraints :) Convex but not differentiable, can still be
optimized by subgradient descent

n.
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Soft SVMs as Empirical Risk Minimization

> What we really want: minimize the 0-1 loss

'ws—argmm Z H g - ) <OH

wcRd i=1

where [[7]] is 1 if 7 is true and 0 otherwise
» Difficult to optimize (neither convex nor differentiable)
> Instead minimize the hinge loss

wg = arg min Zmax (0 1—yWw- m(l‘))

wcRd i=1

hinge(w-2z()
which is a convex upper bound on the 0-1 loss
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A Big Picture of Binary Classification

Both logistic regression and soft SVMs are [3-regularized
minimization of the 0-1 loss by convex surrogates.

Hinge
Loss

Logistic
Loss

-3

-2 -1 0 1 2 3 4
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Generalized Representer Theorem

Claim. Let [ : R™ — [0,00) be any function and define

w* = argmin ||w||* + 1 <'w caW L w e m(”))
weRd

Then w* = Y7 | Biz® for some ;... 5, € R.
Proof. Same as in the hard SVM case

Thus we can simiarly derive an inner product formulation of the
soft SVM solution (will come back to this later):

n
w?ﬁ:amnmlWMP+§:mM(Q1—y@w.ﬁﬂ)
weR? i=1

l(w-m(l)::w-:c("))
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Overview

Non-Separable Data
Multi-Class Classification
Kernel Trick
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One-Vs-All

» Training data: S = {(m(i),y(i))}?zl where y( € {1...m} is
the label of () € R?.

» Parameters: wY € RY for each y € {1...m}

> “One-vs-all” soft SVM objective: optimize

n
min HwHQ—i-Z&:
R i=1

weRd,él..-ﬁne
such that §; >0 foralli=1...n and
wy(i) 2@ ¥ 2@ >1—¢&

foralli=1...nandy € {1...m} such that y # y®

21/33



Unconstrained Formulation

w ™ = argmin [lw]*+

weRd

=1 ye{l..m}: y£y®
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One-Vs-One

> “One-vs-one” soft SVM objective: optimize
n
' 2
min wl|” + &
U’ERd,EL--&LERH I ;"
such that §; >0 foralli=1...n and

w?” @ max w’ -z >1-¢
ye{l..m}y#Ay®

foralli=1...n

» Unconstrained Formulation

'wgne_vs_au = argmin ||w\|2 +
weRd

n
Z max <07 1+ max w? - 2@ — w? . m(i))
i=1 ye{l..m}: y#y®
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Overview

Non-Separable Data
Multi-Class Classification
Kernel Trick
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Inner Product Formulation of Soft SVM (Binary)

» G € R™™: a symmetric matrix with G; ; = () - 20 (i.e.,
the Gram matrix).

B* = argmin B8' GB + Zn: max (O, 1-— y(i),@TGi)

BER™ i=1

n
soft * (1
wg :E Bt
i=1

» User manual
1. Calculate G, j = =V - 29 for every 4,5 = 1...n.
2. Find 3" using G (e.g., by subgradient descent).
3. Test time: given a new point x to classify, return

n
sign Z Bzl . x
i=1:87#0
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Recall:

>

Polynomial Feature Expansion

Idea: transform input by ¢ : R? — RP to allow the linear
model to better fit the data.

0o 0 $0) $(x)
$0)
X $(0)

Example: expansion by a degree p = 2 polynomial with bias
c=1

¢P01Y(271) (x1...2q9) = <<$7,2)@ ) (\/ixixj>i<j ) <\[2xl)z ’ 1>

Computationally expensive: time to calculate feature
expansion O(dP) exponential in p
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But Computing Inner Product is Easy!

> Inner product between two points @ and y in the feature space

POV (@) - gPOVED (y) =N " wimjyiy; +2)  wiyi+ 1
%,] A
2
N

> Instead of computing O(d?) terms in each ¢P°Y(21 (z) and
$P°(21) (3) and then taking a dot product, we can just
1. Compute z = = "y (O(d)-time operation)
2. Square z + 1 (O(1)-time operation)
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Kernel Trick

» |dea: when all we need is inner product, we can do “implicit”
feature expansion by a kernel function without ever computing
the explicit feature expansion

» Kernel function K (x,y) is any function that defines pairwise
similarity between two data points such that

K(z,y) = ¢(x) - d(y)

for some input mapping ¢ : R — ?

» Applicable beyond SVMs (e.g., kernel PCA)
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Degree-p Polynomial Kernel

Parameters: degree p, bias ¢

We saw that the underlying feature expansion is some degree p
polynomial
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Radial Basis Function (RBF) Kernel

Parameter: 2 > 0

2
JFRBF(o?) _ _ |z —yl|
(@, y) =exp | ——5—5—

What is the underlying feature expansion? For 02 = 1,
2 =1 P
RBF(0?) _ LT
KPR (w,y)—CZp! (w y)

p=0

= 1

= CZ ;!quoly(p,ﬁ) (z) - gPOY PO (4

p=0

The underlying feature space is infinite-dimensional.
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Summary of Kernel Trick for Soft SVM

» Before (“linear kernel”)

1. Calculate G, ; = =V - 2\ for every i,j = 1...n.
2. Find 8" using G (e.g., by subgradient descent).
3. Test time: given a new point x to classify, return

n
sign Z ﬂfw(i) -x
i=1:8 #0

» Choose some kernel K(x,y).
1. Calculate G;; = K (2, 209)) for every i,j =1...n.
2. Find 8" using G (e.g., by subgradient descent).
3. Test time: given a new point x to classify, return

sign Z B K (w“’), as)
i=1:87#0
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Aside: Kernel Approximation

» Kernel trick is clever but requires the inner product
formulation. This requires storing the n x n Gram matrix: not
scalable.

» Kernel approximation: approximate the implicit feature
expansion defined under a kernel, and use that expansion
directly

» Rahimi and Recht (2007): z(x) € RY where
zi(x) := /2/N cos (1; - & + b;) given by p; ~ N(0, 1) and

bi ~ Z/{(O, 271')
E[z(z) - 2(y)] = K" (2, y)

Use z(x) € RY directly (no kernel trick)
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Summary

» Soft SVM = hard SVM + slack variables to handle
non-separable data

» A unifying framework for SVMs and logistic regression: convex
surrogate loss on the 0-1 loss

» SVMs can be naturally extended to handle multi-class
classification

» Kernel trick: when training and inference only depend on inner
product between data points, we can replace the inner product
with a kernel function and perform implicit feature expansion
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