
Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor:	Suriya	Gunasekar,	TTI	Chicago

21	June	2018

Day	4:	Classification,	
support	vector	machines

Topics	so	far

• Supervised	learning,	linear	regression	
• Linear	regression

o Overfitting,	bias	variance	trade-off
o Ridge	and	lasso	regression,	gradient	descent

• Yesterday
o Classification,	logistic	regression
o Regularization	for	logistic	regression
o Multi-class	classification

• Today
o Maximum	margin	classifiers
o Kernel	trick

1

Classification

• Supervised	learning:	estimate	a	mapping	𝑓 from	input	
𝑥 ∈ 𝒳 to	output	𝑦 ∈ 𝒴
o Regression 𝒴 = ℝ	or	other	continuous	variables
o Classification 𝒴 takes	discrete	set	of	values	

§ Examples:	
q 𝒴 = {spam, nospam},	
q digits	(not	values)	𝒴 = {0,1,2, … , 9}

• Many	successful	applications	of	ML	in	vision,	speech,	
NLP,	healthcare

2

!"

!#

ç

Parametric	classifiers

• ℋ = 𝒙 → 𝒘. 𝒙 + 𝑤?:𝒘 ∈ ℝA,𝑤? ∈ ℝ

• 𝑦B 𝒙 = sign(𝒘F. 𝒙 + 𝑤F?)
• 𝒘F. 𝒙 + 𝑤F? = 0 (linear)	decision	
boundary	or	separating	hyperplane
separates	ℝA into	two	halfspaces
(regions)	
𝒘F. 𝒙 + 𝑤F? > 0 gets	label	1	and	
𝒘F. 𝒙 + 𝑤F? < 0 gets	label	-1

• more	generally,	𝑦B 𝒙 = sign 𝑓J 𝒙
à decision	boundary	is	𝑓J 𝒙 = 0

3

• The	correct	loss	to	use	is	0-1	loss	after thresholding
ℓ?L 𝑓 𝑥 , 𝑦 = 𝟏 sign 𝑓 𝑥 ≠ 𝑦

= 𝟏 sign 𝑓 𝑥 𝑦 < 0

Surrogate	Losses

4

0 𝑓(𝑥)𝑦 →

ℓ(
𝑓
𝑥
,𝑦
)

• The	correct	loss	to	use	is	0-1	loss	after thresholding
ℓ?L 𝑓 𝑥 , 𝑦 = 𝟏 sign 𝑓 𝑥 ≠ 𝑦

= 𝟏 sign 𝑓 𝑥 𝑦 < 0
• Linear	regression	uses	ℓOP 𝑓 𝑥 , 𝑦 = 𝑓 𝑥 − 𝑦 R

Surrogate	Losses

5

0 𝑦B𝑦 →

ℓ(
𝑓
𝑥
,𝑦
)

0 𝑓(𝑥)𝑦 →

• Hard	to	optimize	over	ℓ?L,	find	another	loss	ℓ(𝑓(𝑥), 𝑦)
o Convex	(for	any	fixed	𝑦)	à easier	to	minimize
o An	upper	bound	of	ℓ?L à small	ℓ ⇒ small	ℓ?L

• Satisfied	by	squared	loss	
àbut	has	“large”	loss	even	when	ℓ?L 𝑓(𝑥), 𝑦 = 0
• Two	more	surrogate	losses	in	in	this	course
o Logistic	loss	
ℓTUV 𝑓(𝑥), 𝑦 = log 1 + exp −𝑓(𝑥)𝑦
o Hinge	loss
ℓZ[\]^ 𝑓(𝑥), 𝑦 = max(0,1 − 𝑓(𝑥)𝑦)	

Surrogate	Losses

6
0 𝑓(𝑥)𝑦 →

ℓ(
𝑓
𝑥
,𝑦
)

Logistic	regression:	ERM	on	surrogate	loss

• 𝑆 = 𝒙 𝒊 , 𝑦 [: 𝑖 = 1,2, … ,𝑁 , 	𝒳 = ℝA, 	𝒴 = {−1,1}
• Linear	model	𝑓 𝒙 = 𝑓𝒘 𝒙 = 𝒘. 𝒙 + 𝑤?
• Minimize	training	loss	

𝒘F,𝑤F? = argmin
𝒘,de

flog 1 + exp − 𝒘. 𝒙 𝒊 + 𝑤? 𝑦 [
�

[

		

• Output	classifier	𝑦B 𝒙 = sign(𝒘. 𝒙 + 𝑤?)

Logistic	loss	
ℓ 𝑓 𝑥 , 𝑦 = log 1 + exp −𝑓(𝑥)𝑦

7

ℓ(
𝑓
𝑥
,𝑦
)

0 𝑓(𝑥)𝑦 →

Logistic	Regression

𝒘F,𝑤F? = argmin
𝒘,de

flog 1 + exp − 𝒘. 𝒙 [+ 𝑤? 𝑦 [
�

[

	

• Convex	optimization	problem
• Can	solve	using	gradient	descent
• Can	also	add	usual	regularization:	ℓR, ℓL

8

𝑦B 𝒙 = sign(𝒘. 𝒙 + 𝑤?)

• {𝒙:𝒘. 𝒙 + 𝑤? = 0} is	a	
hyperplane	in	ℝA
o decision	boundary
o 𝒘 is	direction	of	normal
o 𝑤? is	the	offset

• {𝒙:𝒘. 𝒙 + 𝑤? = 0} divides	
ℝA into	two	halfspaces
(regions)

o 𝒙:𝒘. 𝒙 + 𝑤? ≥ 0 get	label	+1
and	
{𝒙:𝒘. 𝒙 + 𝑤? < 0} get	label	-1

Linear	decision	boundaries

𝑥L

𝑥R

𝒘

9

𝒙′

𝑦B 𝒙 = sign(𝒘. 𝒙 + 𝑤?)

• {𝒙:𝒘. 𝒙 + 𝑤? = 0} is	a	
hyperplane	in	ℝA
o decision	boundary
o 𝒘 is	direction	of	normal
o 𝑤? is	the	offset

• {𝒙:𝒘. 𝒙 + 𝑤? = 0} divides	
ℝA into	two	halfspaces
(regions)

o 𝒙:𝒘. 𝒙 + 𝑤? ≥ 0 get	label	+1
and	
{𝒙:𝒘. 𝒙 + 𝑤? < 0} get	label	-1

Linear	decision	boundaries

𝒙

𝑥L

𝑥R

𝒘

10

Maps	𝒙 to	a	1D	coordinate	

𝑥j =
𝒘. 𝒙 + 𝑤?

𝒘

Linear	separators	in	2D

11Slide	credit:	Nati Srebro

Linear	separators	in	2D

12Slide	credit:	Nati Srebro

Linear	separators	in	2D

13Slide	credit:	Nati Srebro

Margin	of	a	classifier
• Margin: distance	of	
the	closest	
instance	point	to	
the	linear	
hyperplane
• Large	margins	are	
more	stable	
o small	
perturbations	of	
the	data	do	not	
change	the	
prediction

14

𝒙𝟏

𝒙𝟐

!′

!

#$

#%

&

10

Maximum	margin	classifier

• 𝑆 = 𝒙 𝒊 , 𝑦 [: 𝑖 = 1,2, … ,𝑁
binary	classes	𝒴 = {−1,1}
• Assume	data	is	“linearly	separable”

o ∃𝒘,𝑤? such	that	for	all	𝑖 = 1,2, … ,𝑁
𝑦 [= sign 𝒘. 𝒙 𝒊 + 𝑤?
⇒ 𝑦 [(𝒘. 𝒙 𝒊 + 𝑤?) > 0

• Maximum	margin	separator	given	by	

𝒘F,𝑤F? = argmax
𝒘∈ℝm,de

				min
[
	
𝑦 [𝒘. 𝒙 𝒊 + 𝑤?

𝒘

15

margin	of	
sample	𝑖

smallest	
margin

!′

!

#$

#%

&

10

Maximum	margin	classifier

𝒘F,𝑤F? = argmax
𝒘∈ℝm,de∈ℝ

				min
[
	
𝑦 [𝒘. 𝒙 𝒊 + 𝑤?

𝒘

• Claim	1:	If	𝒘F,𝑤F? is	a	solution,
then	for	any	𝛾 > 0, 𝛾𝒘F, 𝛾𝑤F? is	also	a	solution

• Option	1: We	can	fix	 𝒘 = 1 to	get

𝒘F,𝑤F? = arg𝑚𝑎𝑥
𝒘 qL,de

				min
[
	𝑦 [𝒘. 𝒙 𝒊 + 𝑤?

16

Maximum	margin	classifier

𝒘F,𝑤F? = argmax
𝒘∈ℝm,de∈ℝ

				min
[
	
𝑦 [𝒘. 𝒙 𝒊 + 𝑤?

𝒘

• Claim	1:	If	𝒘F,𝑤F? is	a	solution,
then	for	any	𝛾 > 0, 𝛾𝒘F, 𝛾𝑤F? is	also	a	solution

• Option	1:	we	can	fix	 𝒘 = 1 to	get

𝒘F,𝑤F? = arg𝑚𝑎𝑥
𝒘 qL

				min
[
	𝑦 [𝒘. 𝒙 𝒊 + 𝑤?

• Option	2: we	can	also	fix	min
[
	𝑦 [𝒘. 𝒙 𝒊 + 𝑤? = 1

o margin	now	is	 L
𝒘

o Instead	of	“increasing	margin”	we	can	“reduce	norm”

17

Max-margin	classifier	equivalent	formulation

• Solve:	𝒘r,𝑤r? = argmin
𝒘

	 𝒘 R

s.t. ∀𝑖, 	 𝑦 [(𝒘. 𝒙 𝒊 + 𝑤?) ≥ 1

• Claim	2: Equivalent	to	previous	slide	
à

𝒘r
𝒘r
, dre
𝒘r

is	solution	for	
𝒘F,𝑤F? = max

𝒘 qL
min
[
		𝑦 [(𝒘. 𝒙 𝒊 + 𝑤?)	

• Proof:	
1. Let	min

[
		𝑦 [𝒘F. 𝒙 𝒊 + 𝑤F? = 𝛾B,	then	min

[
	𝑦 [𝒘F

tF
. 𝒙 𝒊 + dFe

tF
	 ≥ 1

2. ⇒ 𝒘r ≤ 𝒘F
tF

= L
tF

3. min
[
		𝑦 [𝒘r

𝒘r
. 𝑥 [+ dre

𝒘r
= min

[
	w

x 𝒘r.𝒙 𝒊 ydre
𝒘r

≥ L
𝒘r
≥ 𝛾B

Hard	margin	
Support	Vector	
Machine	(SVM)

18

Maximum	margin	classifier	formulations
• Original	formulation

𝒘F,𝑤F? = argmax
𝒘∈ℝm,de∈ℝ

				min
[
	
𝑦 [𝒘. 𝒙 𝒊 + 𝑤?

𝒘

• Fixing	 𝒘 = 1
𝒘F,𝑤F? = arg𝑚𝑎𝑥

𝒘,de
				min

[
	𝑦 [𝒘. 𝒙 𝒊 + 𝑤? 		s. t. 	 𝒘 = 1

• Fixing	min
[
		𝑦 [𝒘. 𝒙 𝒊 + 𝑤? = 1

𝒘r,𝑤r? = argmin
𝒘

	 𝒘 R			s.t.		∀𝑖, 𝑦 [(𝒘. 𝒙 𝒊 + 𝑤?) ≥ 1

Henceforth,	𝑤? will	be	absorbed	into	𝒘 by	adding	an	additonal
feature	of	‘1’	to	𝒙

19

!′

!

#$

#%

&

10

Margin	and	norm

• margin 𝒘 = min
[

w x 	𝒘.𝒙 𝒊

𝒘

• Remember	in	regression:	small	norm	solutions	have	low	
complexity!
o Is	this	true	for	maximum	margin	classifiers?
o what	about	classification	with	logistic	loss	
∑ log(1 + exp(−𝑦 [𝒘. 𝒙 𝒊))�
[?

o how	to	do	capacity	control	in	maximum	margin	classifier	
learning?	

• Some	places	min	
[
𝑦 [𝒘. 𝒙 𝒊 referred	as	margin	à

implicitly	assumes	normalization	
o min	

[
𝑦 [𝒘. 𝒙 𝒊 is	meaningless	without	knowing	what	 𝒘 is!

20

Solutions	of	hard	margin	SVM

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

• Theorem:	𝒘F = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁
i.e.,	∃{𝛽J[: 𝑖 = 1,2, … , 𝑁} such	that	𝒘F = ∑ 𝛽J[�

[𝒙 𝒊

• Denote	𝒮 = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁 and	
𝒮� = {𝒛 ∈ ℝA: ∀𝑖, 𝒛. 𝒙𝒊 = 0}

o For	any	𝒛 ∈ ℝA, 𝒛 = 𝒛𝒮 + 𝒛𝒮� s.t. 𝒛𝒮 ∈ 𝒮 and	𝒛𝒮� ∈ 𝒮�

o 𝒛 R = 𝒛𝒮 R + 𝒛𝒮�
R

• Three	step	proof:	
1. Decompose	𝒘F = 𝒘F𝓢 + 𝒘F𝓢�.	
2. min

[
	𝑦 [𝒘F. 𝒙 𝒊 ≥ 1 ⇒ min

[
	𝑦 [𝒘F𝒮. 𝒙 𝒊 ≥ 1		

(because	𝒘F𝓢�. 𝒙 𝒊 = 0	∀𝑖)
3. if	𝒘F𝓢� ≠ 0, then		 𝒘F𝓢 < 𝒘F

21

Solutions	of	hard	margin	SVM

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

• Theorem:	𝒘F = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁
i.e.,	∃{𝛽J[: 𝑖 = 1,2, … , 𝑁} such	that	𝒘F = ∑ 𝛽J[�

[𝒙 𝒊

• Denote	𝒮 = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁 and	
𝒮� = {𝒛 ∈ ℝA: ∀𝑖, 𝒛. 𝒙𝒊 = 0}

o For	any	𝒛 ∈ ℝA, 𝒛 = 𝒛𝒮 + 𝒛𝒮� s.t. 𝒛𝒮 ∈ 𝒮 and	𝒛𝒮� ∈ 𝒮�

o 𝒛 R = 𝒛𝒮 R + 𝒛𝒮�
R

• Three	step	proof:	
1. Decompose	𝒘F = 𝒘F𝓢 + 𝒘F𝓢�.	
2. min

[
	𝑦 [𝒘F. 𝒙 𝒊 ≥ 1 ⇒ min

[
	𝑦 [𝒘F𝒮. 𝒙 𝒊 ≥ 1		

(because	𝒘F𝓢�. 𝒙 𝒊 = 0	∀𝑖)
3. if	𝒘F𝓢� ≠ 0, then		 𝒘F𝓢 < 𝒘F

22

Solutions	of	hard	margin	SVM

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

• Theorem:	𝒘F = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁
i.e.,	∃{𝛽J[: 𝑖 = 1,2, … , 𝑁} such	that	𝒘F = ∑ 𝛽J[�

[𝒙 𝒊

• Denote	𝒮 = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁 and	
𝒮� = {𝒛 ∈ ℝA: ∀𝑖, 𝒛. 𝒙𝒊 = 0}

o For	any	𝒛 ∈ ℝA, 𝒛 = 𝒛𝒮 + 𝒛𝒮� s.t. 𝒛𝒮 ∈ 𝒮 and	𝒛𝒮� ∈ 𝒮�

o 𝒛 R = 𝒛𝒮 R + 𝒛𝒮�
R

• Three	step	proof:	
1. Decompose	𝒘F = 𝒘F𝓢 + 𝒘F𝓢�.	
2. min

[
	𝑦 [𝒘F. 𝒙 𝒊 ≥ 1 ⇒ min

[
	𝑦 [𝒘F𝒮. 𝒙 𝒊 ≥ 1		

(because	𝒘F𝓢�. 𝒙 𝒊 = 0	∀𝑖)
3. if	𝒘F𝓢� ≠ 0, then		 𝒘F𝓢 < 𝒘F

23

Representer Theorem

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

• Theorem:	𝒘F = 𝑠𝑝𝑎𝑛 𝒙 𝒊 : 𝑖 = 1,2, … , 𝑁 i.e.,	

∃{𝛽J[: 𝑖 = 1,2, … , 𝑁} such	that	𝒘F = ∑ 𝛽J[�
[𝒙 𝒊

o Special	case	of	representor	theorem	

• Theorem	(ext):	additionally,	{𝛽J[} also	stisfies	𝛽J[= 0	for	
all	𝑖 such	that	𝑦 [𝒘. 𝒙 𝒊 > 1
• Proof?:	(animation	next	slide)

24

𝑤F

25Illustration	credit:	Nati Srebro

Representer Theorem

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

• Theorem:	∃{𝛽J[: 𝑖 = 1,2, … ,𝑁} such	that	𝒘F = ∑ 𝛽J[�
[𝒙 𝒊

{𝛽J[} also	satisfies	𝛽J[= 0	for	all	𝑖 such	that	𝑦 [𝒘F. 𝒙 𝒊 > 1

• 𝑆𝑉(𝑤F) = {𝒊: 𝑦 [𝒘F. 𝒙 𝒊 = 𝟏} datapoints closest	to	𝑤F
o called	support	vectors
o hence	support	vector	machine

𝒘F = f 	𝛽J[𝒙 𝒊
�

[∈P�(dF)

26

Representer Theorem

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

• Theorem:	∃{𝛽J[: 𝑖 = 1,2, … ,𝑁} such	that	𝒘F = ∑ 𝛽J[�
[𝒙 𝒊

{𝛽J[} also	satisfies	𝛽J[= 0	for	all	𝑖 such	that	𝑦 [𝒘F. 𝒙 𝒊 > 1

• 𝑆𝑉(𝑤F) = {𝒊: 𝑦 [𝒘F. 𝒙 𝒊 = 𝟏} datapoints closest	to	𝑤F
o called	support	vectors
o hence	support	vector	machine

𝒘F = f 	𝛽J[𝒙 𝒊
�

[∈P�(dF)

27

How	do	we	get	𝑤F?

Optimizing	the	SVM	problem

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1					∀𝑖

1. Can	do	sub-gradient	descent	(next	class)
2. Special	case	of	quadratic	program

min
𝒛

𝟏
𝟐
	𝒛�𝑷𝒛 + 𝒒�𝒛		

𝑠. 𝑡. 		𝑮𝒛 ≤ 𝒉, 𝑨𝒛 = 𝒃	
o Change	of	variables	𝒘F = ∑ 	𝛽J[𝒙 𝒊�

[∈P�(dF) ?
o Change	of	variables	𝒘F = ∑ 𝛽J[𝒙 𝒊�

[qL !

28

Optimizing	the	SVM	problem

𝒘F = argmin
𝒘

	 𝒘 R							𝑠. 𝑡., 𝑦 [𝒘. 𝒙 𝒊 ≥ 1		∀𝑖

• Change	of	variables	𝒘 = ∑ 𝛽[𝒙 𝒊�
[qL !

≡ min
{�x}

ff𝛽[𝛽�𝒙 𝒊 . 𝒙 𝒋
\

�qL

�

[qL

		𝑠. 𝑡. 			f𝛽�	𝑦 [𝒙 𝒊 . 𝒙 𝒋
𝑵

𝒋q𝟏

≥ 1		∀𝒊

= min
𝜷∈ℝ𝑵

	𝜷�𝑮𝜷			𝑠. 𝑡. 𝑦 [𝑮𝜷 [≥ 1				∀𝑖

• 𝑮 ∈ ℝ�×�	with	𝐺[� = 𝒙 𝒊 . 𝒙 𝒋 is	called	the	gram	matrix
• Convex	program:	quadratic	programming

29

The	Kernel

min
d
	 𝑤 R 			𝑠. 𝑡. 			𝑦 [𝒘. 𝒙 𝒊 ≥ 1		∀𝑖

≡ min
𝜷∈ℝ𝑵

	𝜷�𝑮𝜷			𝑠. 𝑡. 𝑦 [𝑮𝜷 [≥ 1		∀𝑖

• Optimization	problem	depends	on	𝒙 𝒊 only	through	the	
values	of	𝐺[� = 𝒙 𝒊 . 𝒙 𝒋 for	𝑖, 𝑗 ∈ [𝑁].		
• What	about	prediction?

𝒘F. 𝒙 =f𝛽[

�

[

𝒙 𝒊 . 𝒙

• Function	𝐾 𝒙, 𝒙j = 𝒙. 𝒙′ is	called	the	Kernel
• Learning	non-linear	classifiers	using	feature	transformations,	
i.e.,	𝑓𝒘 𝒙 = 𝒘.𝜙(𝒙) for	some	𝜙(𝒙)
o only	thing	we	need	to	know	is	𝐾� 𝒙, 𝒙j = 𝐾(𝜙 𝒙 , 𝜙(𝒙′))

30

The	Kernel

min
d
	 𝑤 R 			𝑠. 𝑡. 			𝑦 [𝒘. 𝒙 𝒊 ≥ 1		∀𝑖

≡ min
𝜷∈ℝ𝑵

	𝜷�𝑮𝜷			𝑠. 𝑡. 𝑦 [𝑮𝜷 [≥ 1		∀𝑖

• Optimization	problem	depends	on	𝒙 𝒊 only	through	the	
values	of	𝐺[� = 𝒙 𝒊 . 𝒙 𝒋 for	𝑖, 𝑗 ∈ [𝑁].		
• What	about	prediction?

𝒘F. 𝒙 =f𝛽[

�

[

𝒙 𝒊 . 𝒙

• Function	𝐾 𝒙, 𝒙j = 𝒙. 𝒙′ is	called	the	Kernel
• Learning	non-linear	classifiers	using	feature	transformations,	
i.e.,	𝑓𝒘 𝒙 = 𝒘.𝜙(𝒙) for	some	𝜙(𝒙)
o only	thing	we	need	to	know	is	𝐾� 𝒙, 𝒙j = 𝐾(𝜙 𝒙 , 𝜙(𝒙′))

31

The	Kernel

min
d
	 𝑤 R 			𝑠. 𝑡. 			𝑦 [𝒘. 𝒙 𝒊 ≥ 1		∀𝑖

≡ min
𝜷∈ℝ𝑵

	𝜷�𝑮𝜷			𝑠. 𝑡. 𝑦 [𝑮𝜷 [≥ 1		∀𝑖

• Optimization	problem	depends	on	𝒙 𝒊 only	through	the	
values	of	𝐺[� = 𝒙 𝒊 . 𝒙 𝒋 for	𝑖, 𝑗 ∈ [𝑁].		
• What	about	prediction?

𝒘F. 𝒙 =f𝛽[

�

[

𝒙 𝒊 . 𝒙

• Function	𝐾 𝒙, 𝒙j = 𝒙. 𝒙′ is	called	the	Kernel
• Learning	non-linear	classifiers	using	feature	transformations,	
i.e.,	𝑓𝒘 𝒙 = 𝒘.𝜙(𝒙) for	some	𝜙(𝒙)
o only	thing	we	need	to	know	is	𝐾� 𝒙, 𝒙j = 𝐾(𝜙 𝒙 , 𝜙(𝒙′))

32

Kernels	As	Prior	Knowledge

• If	we	think	that	positive	examples	can	(almost)	be	
separated	by	some	ellipse:

then	we	should	use	polynomials	of	degree	2
• A	Kernel	encodes	a	measure	of	similarity	between	
objects.		A	bit	like	NN,	except	that	it	must	be	a	valid	
inner	product	function.

33Slide	credit:	Nati Srebro

