Day 4: Classification, support vector machines

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

21 June 2018

Topics so far

- Supervised learning, linear regression
- Linear regression
- Overfitting, bias variance trade-off
- Ridge and lasso regression, gradient descent
- Yesterday
- Classification, logistic regression
- Regularization for logistic regression
- Multi-class classification
- Today
- Maximum margin classifiers
- Kernel trick

Classification

- Supervised learning: estimate a mapping f from input $x \in \mathcal{X}$ to output $y \in \mathcal{Y}$
- Regression $\mathcal{Y}=\mathbb{R}$ or other continuous variables
- Classification \mathcal{Y} takes discrete set of values
- Examples:
- $\mathcal{Y}=\{$ spam, nospam $\}$,
\square digits (not values) $\mathcal{Y}=\{0,1,2, \ldots, 9\}$
- Many successful applications of ML in vision, speech, NLP, healthcare

Parametric classifiers

- $\mathcal{H}=\left\{\boldsymbol{x} \rightarrow \boldsymbol{w} \cdot \boldsymbol{x}+w_{0}: \boldsymbol{w} \in \mathbb{R}^{d}, w_{0} \in \mathbb{R}\right\}$
- $\hat{y}(\boldsymbol{x})=\operatorname{sign}\left(\widehat{\boldsymbol{w}} \cdot \boldsymbol{x}+\widehat{w}_{0}\right)$
- $\widehat{\boldsymbol{w}} \cdot \boldsymbol{x}+\widehat{w}_{0}=0$ (linear) decision boundary or separating hyperplane separates \mathbb{R}^{d} into two halfspaces (regions) $\widehat{\boldsymbol{w}} \cdot \boldsymbol{x}+\widehat{w}_{0}>0$ gets label 1 and $\widehat{\boldsymbol{w}} \cdot \boldsymbol{x}+\widehat{w}_{0}<0$ gets label -1
- more generally, $\hat{y}(\boldsymbol{x})=\operatorname{sign}(\hat{f}(\boldsymbol{x}))$

\rightarrow decision boundary is $\hat{f}(\boldsymbol{x})=0$

Surrogate Losses

- The correct loss to use is 0-1 loss after thresholding

$$
\begin{aligned}
\ell^{01}(f(x), y) & =\mathbf{1}[\operatorname{sign}(f(x)) \neq y] \\
& =\mathbf{1}[\operatorname{sign}(f(x) y)<0]
\end{aligned}
$$

Surrogate Losses

- The correct loss to use is 0-1 loss after thresholding

$$
\begin{aligned}
\ell^{01}(f(x), y) & =\mathbf{1}[\operatorname{sign}(f(x)) \neq y] \\
& =\mathbf{1}[\operatorname{sign}(f(x) y)<0]
\end{aligned}
$$

- Linear regression uses $\ell^{L S}(f(x), y)=(f(x)-y)^{2}$

Surrogate Losses

- Hard to optimize over ℓ^{01}, find another loss $\ell(f(x), y)$
- Convex (for any fixed y) \rightarrow easier to minimize
- An upper bound of $\ell^{01} \rightarrow$ small $\ell \Rightarrow$ small ℓ^{01}
- Satisfied by squared loss
\rightarrow but has "large" loss even when $\ell^{01}(f(x), y)=0$
- Two more surrogate losses in in this course
- Logistic loss $\ell^{\log }(f(x), y)=\log (1+\exp (-f(x) y$ - Hinge loss $\ell^{\text {hinge }}(f(x), y)=\max (0,1-f(x) y$,

Logistic regression: ERM on surrogate loss

Logistic loss
$\ell(f(x), y)=\log (1+\exp (-f(x) y))$

- $S=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}, \quad X=\mathbb{R}^{d}, \quad \mathcal{Y}=\{-1,1\}$
- Linear model $f(\boldsymbol{x})=f_{\boldsymbol{w}}(\boldsymbol{x})=\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}$
- Minimize training loss

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\boldsymbol{w}, w_{0}}{\operatorname{argmin}} \sum_{i} \log \left(1+\exp \left(-\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right) y^{(i)}\right)\right)
$$

- Output classifier $\hat{y}(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}\right)$

Logistic Regression

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\boldsymbol{w}, \mathbf{w}_{0}}{\operatorname{argmin}} \sum_{i} \log \left(1+\exp \left(-\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right) \boldsymbol{y}^{(i)}\right)\right)
$$

- Convex optimization problem
- Can solve using gradient descent
- Can also add usual regularization: ℓ_{2}, ℓ_{1}

Linear decision boundaries

$\hat{y}(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}\right)$

- $\left\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+w_{0}=0\right\}$ is a hyperplane in \mathbb{R}^{d}
- decision boundary
- w is direction of normal
- w_{0} is the offset
- $\left\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+w_{0}=0\right\}$ divides \mathbb{R}^{d} into two halfspaces (regions)
- $\left\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+w_{0} \geq 0\right\}$ get label +1 and $\left\{\boldsymbol{x}: \mathbf{w} \cdot \boldsymbol{x}+w_{0}<0\right\}$ get label -1

Linear decision boundaries

$\hat{y}(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}\right)$

- $\left\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+w_{0}=0\right\}$ is a

Maps \boldsymbol{x} to a 1D coordinate hyperplane in \mathbb{R}^{d}

- decision boundary
- w is direction of normal
- w_{0} is the offset
- $\left\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+w_{0}=0\right\}$ divides \mathbb{R}^{d} into two halfspaces (regions)
- $\left\{\boldsymbol{x}: w \cdot \boldsymbol{x}+w_{0} \geq 0\right\}$ get label +1 and
$\left\{\boldsymbol{x}: \mathbf{w} \cdot \boldsymbol{x}+w_{0}<0\right\}$ get label -1

$$
x^{\prime}=\frac{\boldsymbol{w} \cdot \boldsymbol{x}+w_{0}}{\|\boldsymbol{w}\|}
$$

Linear separators in 2D

Margin of a classifier

- Margin: distance of the closest instance point to the linear hyperplane
- Large margins are more stable - small perturbations of the data do not change the prediction

Maximum margin classifier

- $S=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}$ binary classes $\mathcal{Y}=\{-1,1\}$
- Assume data is "linearly separable"
- $\exists \boldsymbol{w}, w_{0}$ such that for all $i=1,2, \ldots, N$

$$
\begin{aligned}
& y^{(i)}=\operatorname{sign}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right) \\
& \Rightarrow y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)>0
\end{aligned}
$$

- Maximum margin separator given by

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}, w_{0}}{\operatorname{argmax}} \min _{i} \frac{y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)}{\|\boldsymbol{w}\|}
$$

smallest margin of

$$
\text { margin } \quad \text { sample } i
$$

Maximum margin classifier

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}, w_{0} \in \mathbb{R}}{\operatorname{argmax}} \min _{i} \frac{y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)}{\|\boldsymbol{w}\|}
$$

- Claim 1: If $\widehat{w}, \widehat{w}_{0}$ is a solution, then for any $\gamma>0, \gamma \widehat{\boldsymbol{w}}, \gamma \widehat{w}_{0}$ is also a solution
- Option 1: We can fix $\|w\|=1$ to get

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\|\boldsymbol{w}\|=1, w_{0}}{\operatorname{argmax}} \min _{i} y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)
$$

Maximum margin classifier

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}, w_{0} \in \mathbb{R}}{\operatorname{argmax}} \min _{i} \frac{y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)}{\|\boldsymbol{w}\|}
$$

- Claim 1: If $\widehat{w}, \widehat{w}_{0}$ is a solution, then for any $\gamma>0, \gamma \widehat{\boldsymbol{w}}, \gamma \widehat{w}_{0}$ is also a solution
- Option 1: we can fix $\|\boldsymbol{w}\|=1$ to get

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\|\boldsymbol{w}\|=1}{\operatorname{argmax}} \min _{i} y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)
$$

- Option 2: we can also fix $\min _{i} y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)=1$
- margin now is $\frac{1}{\|w\|}$
- Instead of "increasing margin" we can "reduce norm"

Max-margin classifier equivalent formulation

- Solve: $\widetilde{\boldsymbol{w}}, \widetilde{w}_{0}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2}$

$$
\text { s.t. } \forall i, \quad y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(\boldsymbol{i})}+w_{0}\right) \geq 1
$$

Hard margin Support Vector Machine (SVM)

- Claim 2: Equivalent to previous slide $\rightarrow \frac{\widetilde{w}}{\|\widetilde{w}\|}, \frac{\widetilde{w}_{0}}{\|\widetilde{w}\|}$ is solution for

$$
\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\max _{\|\boldsymbol{w}\|=1} \min _{i} y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(\boldsymbol{i})}+w_{0}\right)
$$

- Proof:

1. Let $\min _{i} y^{(i)}\left(\widehat{\boldsymbol{w}} \cdot \boldsymbol{x}^{(i)}+\widehat{w}_{0}\right)=\hat{\gamma}$, then $\min _{i} y^{(i)}\left(\frac{\widehat{w}}{\hat{\gamma}} \cdot \boldsymbol{x}^{(i)}+\frac{\widehat{w}_{0}}{\widehat{\gamma}}\right) \geq 1$
2. $\Rightarrow\|\widetilde{\boldsymbol{w}}\| \leq\left\|\frac{\hat{w}}{\hat{\gamma}}\right\|=\frac{1}{\hat{\gamma}}$
3. $\min _{i} y^{(i)}\left(\frac{\widetilde{w}}{\|\widetilde{w}\|} \cdot x^{(i)}+\frac{\widetilde{w}_{0}}{\|\widetilde{w}\|}\right)=\min _{i} \frac{y^{(i)}\left(\widetilde{w} . x^{(i)}+\widetilde{w}_{0}\right)}{\|\widetilde{w}\|} \geq \frac{1}{\|\widetilde{w}\|} \geq \hat{\gamma}$

Maximum margin classifier formulations

- Original formulation
$\widehat{\boldsymbol{w}}, \widehat{w}_{0}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}, w_{0} \in \mathbb{R}}{\operatorname{argmax}} \min _{i} \frac{y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)}{\|\boldsymbol{w}\|}$
- Fixing $\|w\|=1$

$$
\widehat{w}, \widehat{w}_{0}=\underset{w, w_{0}}{\operatorname{argmax}} \min _{i} y^{(i)}\left(\boldsymbol{w} . \boldsymbol{x}^{(i)}+w_{0}\right) \text { s.t. }\|w\|=1
$$

- Fixing $\min _{i} y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right)=1$

$$
\widetilde{\boldsymbol{w}}, \widetilde{w}_{0}^{i}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \text { s.t. } \forall i, y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}+w_{0}\right) \geq 1
$$

Henceforth, w_{0} will be absorbed into \boldsymbol{w} by adding an additonal feature of ' 1 ' to \boldsymbol{x}

Margin and norm

- $\operatorname{margin}(\boldsymbol{w})=\min _{i} \frac{\boldsymbol{y}^{(i)} \boldsymbol{w} \boldsymbol{x}^{(i)}}{\|\boldsymbol{w}\|}$
- Remember in regression: small norm solutions have low complexity!
- Is this true for maximum margin classifiers?
- what about classification with logistic loss

$$
\sum_{i} \log \left(1+\exp \left(-y^{(i)} w \cdot \boldsymbol{x}^{(i)}\right)\right) ?
$$

- how to do capacity control in maximum margin classifier learning?
- Some places $\min _{i} y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}$ referred as margin \rightarrow implicitly assumes normalization
$\circ \min _{i} y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}$ is meaningless without knowing what $\|\boldsymbol{w}\|$ is!

Solutions of hard margin SVM

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$

- Theorem: $\widehat{\boldsymbol{w}}=\operatorname{span}\left\{\boldsymbol{x}^{(i)}: i=1,2, \ldots, N\right\}$
i.e., $\exists\left\{\hat{\beta}_{i}: i=1,2, \ldots, N\right\}$ such that $\widehat{\boldsymbol{w}}=\sum_{i} \hat{\beta}_{i} \boldsymbol{x}^{(i)}$

Solutions of hard margin SVM

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$

- Theorem: $\widehat{\boldsymbol{w}}=\operatorname{span}\left\{\boldsymbol{x}^{(i)}: i=1,2, \ldots, N\right\}$
i.e., $\exists\left\{\hat{\beta}_{i}: i=1,2, \ldots, N\right\}$ such that $\widehat{w}=\sum_{i} \hat{\beta}_{i} x^{(i)}$
- Denote $\mathcal{S}=\operatorname{span}\left\{\boldsymbol{x}^{(i)}: i=1,2, \ldots, N\right\}$ and

$$
\mathcal{S}^{\perp}=\left\{\mathbf{z} \in \mathbb{R}^{d}: \forall i, \mathbf{z} \cdot \boldsymbol{x}_{\boldsymbol{i}}=0\right\}
$$

\circ For any $\mathbf{z} \in \mathbb{R}^{d}, \mathbf{z}=\boldsymbol{z}_{\mathcal{S}}+\boldsymbol{z}_{\mathcal{S}^{\perp}}$ s.t. $\boldsymbol{z}_{\mathcal{S}} \in \mathcal{S}$ and $\mathbf{z}_{\mathcal{S}^{\perp}} \in \mathcal{S}^{\perp}$

- $\|z\|^{2}=\left\|z_{\mathcal{S}}\right\|^{2}+\left\|z_{\mathcal{S}^{\perp}}\right\|^{2}$

Solutions of hard margin SVM

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$

- Theorem: $\widehat{\boldsymbol{w}}=\operatorname{span}\left\{\boldsymbol{x}^{(i)}: i=1,2, \ldots, N\right\}$
i.e., $\exists\left\{\hat{\beta}_{i}: i=1,2, \ldots, N\right\}$ such that $\widehat{w}=\sum_{i} \hat{\beta}_{i} x^{(i)}$
- Denote $\mathcal{S}=\operatorname{span}\left\{\boldsymbol{x}^{(i)}: i=1,2, \ldots, N\right\}$ and

$$
\mathcal{S}^{\perp}=\left\{\mathbf{z} \in \mathbb{R}^{d}: \forall i, \mathbf{z} \cdot \boldsymbol{x}_{\boldsymbol{i}}=0\right\}
$$

- For any $\mathbf{z} \in \mathbb{R}^{d}, \mathbf{z}=\boldsymbol{z}_{\mathcal{S}}+\mathbf{z}_{\mathcal{S}^{\perp}}$ s.t. $\mathbf{z}_{\mathcal{S}} \in \mathcal{S}$ and $\mathbf{z}_{\mathcal{S}^{\perp}} \in \mathcal{S}^{\perp}$
- $\|z\|^{2}=\left\|z_{\mathcal{S}}\right\|^{2}+\left\|z_{\mathcal{S}^{\perp}}\right\|^{2}$
- Three step proof:

1. Decompose $\widehat{\boldsymbol{w}}=\widehat{\boldsymbol{w}}_{\boldsymbol{S}}+\widehat{\boldsymbol{w}}_{\boldsymbol{S}^{\perp}}$.
2. $\min _{i} y^{(i)} \widehat{\boldsymbol{w}} \cdot \boldsymbol{x}^{(i)} \geq 1 \Rightarrow \min _{i} y^{(i)} \widehat{\boldsymbol{w}}_{\mathcal{S}} \cdot \boldsymbol{x}^{(i)} \geq 1$
(because $\widehat{\boldsymbol{w}}_{\boldsymbol{S}^{\perp}} \cdot \boldsymbol{x}^{(i)}=0 \forall i$)
3. if $\widehat{\boldsymbol{w}}_{\boldsymbol{S}^{\perp}} \neq 0$, then $\left\|\widehat{\boldsymbol{w}}_{s}\right\|<\|\widehat{\boldsymbol{w}}\|$

Representer Theorem

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} . \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$

- Theorem: $\widehat{\boldsymbol{w}}=\operatorname{span}\left\{\boldsymbol{x}^{(i)}: i=1,2, \ldots, N\right\}$ i.e.,
$\exists\left\{\hat{\beta}_{i}: i=1,2, \ldots, N\right\}$ such that $\widehat{\boldsymbol{w}}=\sum_{i} \hat{\beta}_{i} \boldsymbol{x}^{(i)}$
- Special case of representor theorem
- Theorem (ext): additionally, $\left\{\hat{\beta}_{i}\right\}$ also stisfies $\hat{\beta}_{i}=0$ for all i such that $y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}>1$
- Proof?: (animation next slide)

Representer Theorem

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} . \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$

- Theorem: $\exists\left\{\hat{\beta}_{i}: i=1,2, \ldots, N\right\}$ such that $\widehat{\boldsymbol{w}}=\sum_{i} \hat{\beta}_{i} \boldsymbol{x}^{(i)}$ $\left\{\hat{\beta}_{i}\right\}$ also satisfies $\hat{\beta}_{i}=0$ for all i such that $y^{(i)} \widehat{\boldsymbol{w}} \cdot \boldsymbol{x}^{(i)}>1$
- $S V(\widehat{w})=\left\{\boldsymbol{i}: y^{(i)} \widehat{w} \cdot \boldsymbol{x}^{(i)}=\mathbf{1}\right\}$ datapoints closest to \widehat{w}
- called support vectors
- hence support vector machine

$$
\widehat{\boldsymbol{w}}=\sum_{i \in S V(\widehat{w})} \hat{\beta}_{i} x^{(i)}
$$

Representer Theorem

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} . \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$

- Theorem: $\exists\left\{\hat{\beta}_{i}: i=1,2, \ldots, N\right\}$ such that $\widehat{\boldsymbol{w}}=\sum_{i} \hat{\beta}_{i} \boldsymbol{x}^{(i)}$ $\left\{\hat{\beta}_{i}\right\}$ also satisfies $\hat{\beta}_{i}=0$ for all i such that $y^{(i)} \widehat{w} \cdot x^{(i)}>1$
- $S V(\widehat{w})=\left\{\boldsymbol{i}: y^{(i)} \widehat{w} \cdot \boldsymbol{x}^{(i)}=\mathbf{1}\right\}$ datapoints closest to \widehat{w}
- called support vectors
- hence support vector machine

$$
\widehat{w}=\sum_{i \in S V(\widehat{w})} \hat{\beta}_{i} x^{(i)}
$$

How do we get \widehat{w} ?

Optimizing the SVM problem

$$
\widehat{\boldsymbol{w}}=\operatorname{argmin}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 \quad \forall i
$$ W

1. Can do sub-gradient descent (next class)
2. Special case of quadratic program

$$
\begin{aligned}
& \min _{z} \frac{\mathbf{1}}{\mathbf{2}} z^{\top} \boldsymbol{P} z+\boldsymbol{q}^{\top} \boldsymbol{z} \\
& \text { s.t. } \boldsymbol{G} \boldsymbol{z} \leq \boldsymbol{h}, \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b}
\end{aligned}
$$

- Change of variables $\widehat{w}=\sum_{i \in S V(\hat{w})} \hat{\beta}_{i} x^{(i)}$?
- Change of variables $\widehat{w}=\sum_{i=1}^{N} \hat{\beta}_{i} x^{(i)}$!

Optimizing the SVM problem

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2} \quad \text { s.t., } \quad y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \geq 1 \forall i
$$

- Change of variables $\boldsymbol{w}=\sum_{i=1}^{N} \beta_{i} \boldsymbol{x}^{(i)}$!

$$
\begin{gathered}
\equiv \min _{\left\{\beta_{i}\right\}} \sum_{i=1}^{N} \sum_{j=1}^{n} \beta_{i} \beta_{j} x^{(i)} \cdot x^{(j)} \text { s.t. } \sum_{j=1}^{N} \beta_{j} y^{(i)} x^{(i)} \cdot x^{(j)} \geq 1 \quad \forall \boldsymbol{i} \\
=\min _{\beta \in \mathbb{R}^{N}} \beta^{\top} G \beta \text { s.t. } y^{(i)}(G \beta)_{i} \geq 1 \quad \forall i
\end{gathered}
$$

- $G \in \mathbb{R}^{N \times N}$ with $G_{i j}=x^{(i)} . x^{(j)}$ is called the gram matrix
- Convex program: quadratic programming

The Kernel

$$
\begin{aligned}
& \min _{w}\|w\|^{2} \quad \text { s.t. } y^{(i)} w . x^{(i)} \geq 1 \forall i \\
& \equiv \min _{\beta \in \mathbb{R}^{\mathbb{N}}} \beta^{\top} \boldsymbol{G} \beta \text { s.t. } y^{(i)}(\boldsymbol{G} \beta)_{i} \geq 1 \quad \forall i
\end{aligned}
$$

- Optimization problem depends on $x^{(i)}$ only through the values of $G_{i j}=x^{(i)} . x^{(j)}$ for $i, j \in[N]$.

The Kernel

$$
\begin{aligned}
& \min _{w}\|w\|^{2} \text { s.t. } y^{(i)} \boldsymbol{w} . \boldsymbol{x}^{(i)} \geq 1 \forall i \\
& \equiv \min _{\boldsymbol{\beta} \in \mathbb{R}^{N}} \boldsymbol{\beta}^{\top} \boldsymbol{G} \boldsymbol{\beta} \text { s.t. } y^{(i)}(\boldsymbol{G} \boldsymbol{\beta})_{i} \geq 1 \forall i
\end{aligned}
$$

- Optimization problem depends on $x^{(i)}$ only through the values of $G_{i j}=x^{(i)} . x^{(j)}$ for $i, j \in[N]$.
- What about prediction?

$$
\widehat{w} \cdot x=\sum_{i} \beta_{i} x^{(i)} \cdot x
$$

The Kernel

$$
\begin{aligned}
& \min _{w}\|w\|^{2} \text { s.t. } y^{(i)} \boldsymbol{w} . \boldsymbol{x}^{(i)} \geq 1 \forall i \\
& \equiv \min _{\boldsymbol{\beta} \in \mathbb{R}^{N}} \boldsymbol{\beta}^{\top} \boldsymbol{G} \boldsymbol{\beta} \text { s.t. } \boldsymbol{y}^{(i)}(\boldsymbol{G} \boldsymbol{\beta})_{i} \geq 1 \forall i
\end{aligned}
$$

- Optimization problem depends on $x^{(i)}$ only through the values of $G_{i j}=x^{(i)} . x^{(j)}$ for $i, j \in[N]$.
-What about prediction?

$$
\widehat{w} \cdot x=\sum_{i} \beta_{i} x^{(i)} \cdot x
$$

- Function $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{x} . \boldsymbol{x}^{\prime}$ is called the Kernel
- Learning non-linear classifiers using feature transformations, i.e., $f_{\boldsymbol{w}}(\boldsymbol{x})=\boldsymbol{w} . \phi(\boldsymbol{x})$ for some $\phi(\boldsymbol{x})$
- only thing we need to know is $K_{\phi}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=K\left(\phi(\boldsymbol{x}), \phi\left(\boldsymbol{x}^{\prime}\right)\right)$

Kernels As Prior Knowledge

- If we think that positive examples can (almost) be separated by some ellipse:

then we should use polynomials of degree 2
- A Kernel encodes a measure of similarity between objects. A bit like NN, except that it must be a valid inner product function.

