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Topics so far

e Supervised learning, linear regression

* Linear regression
o Overfitting, bias variance trade-off
o Ridge and lasso regression, gradient descent

* Yesterday
o Classification, logistic regression
o Regularization for logistic regression
o Multi-class classification

* Today
o Maximum margin classifiers
o Kernel trick



Classification

* Supervised learning: estimate a mapping f from input
x € X tooutputy €Y
o Regression Y = R or other continuous variables
o Classification Y takes discrete set of values
" Examples:
o Y = {spam, nospam},

a digits (not values) Y = {0,1,2, ..., 9}

* Many successful applications of ML in vision, speech,
NLP, healthcare



Parametric classifiers

e H={x->w.x+wyweR%w, €R}
e y(x) = sign(W.x + W,)

* W.x + W, = 0 (linear) decision A
boundary or separating hyperplane \Z‘x X%

7z
separates R? into two halfspaces Q) < 0
(regions)
w.x + wy > 0 gets label 1 and & >~

w.x +wy < 0 gets label -1 X% N\ ©

* more generally, y(x) = sign (f(x))
- decision boundary is f(x) = 0



Surrogate Losses

* The correct loss to use is 0-1 loss after thresholding
M (f (), y) = 1[sign(f (0)) # y]
= 1[sign(f (x)y) < 0]

£(f(x),y)

]

0 f(x)y =




Surrogate Losses

* The correct loss to use is 0-1 loss after thresholding
M (f (), y) = 1[sign(f (0)) # y]
= 1[sign(f (x)y) < 0]
e Linear regression uses #°(f(x),y) = (f (x) — y)?

£(f(x),y)

0 f(x)y =



Surrogate Losses

e Hard to optimize over £°1, find another loss £(f (x), y)
o Convex (for any fixed y) = easier to minimize

o An upper bound of #°1 = small £ = small £91
 Satisfied by squared loss
- but has “large” loss even when £°1(f(x),y) = 0

* Two more surrogate losses in in this course

o Logistic loss

£'°8(f (x), ) = log(1 + exp(~£ (x))
o Hinge loss

phinge (£(x),y) = max(0,1 — f(x)y

£(f (x), y)

0

fx)y -




Logistic regression: ERM on surrogate loss

Logistic loss

£(f (x),y) = log(1 + exp(—f(x)y))

£(f (x), y)

I

0 feoy
S={(x®W,y®):i=12,.,N}, X =R% Y={-11}

Linear model f(x) = f,,(x) = w.x + wy

Minimize training loss

w, W, = argminz log (1 + exp(—(w. x® 4 Wo)y(i)))
wW,Wg :

Output classifier y(x) = sign(w.x + wy)



Logistic Regression

w,w, = argminz: log (1 + exp(—(wl xr® 4+ Wo)y(i)))
w,W i

* Convex optimization problem
* Can solve using gradient descent
* Can also add usual regularization: £,, £4



Linear decision boundaries
y(x) = sign(w.x + wy)

{x:w.x+wy =0} isa
hyperplane in R¢
o decision boundary
o W is direction of normal A
o Wy is the offset
* {x:w.x + wy = 0} divides %X
R into two halfspaces
(regions)
o {x:w.x +wy = 0} get label +1

and
{x:w.x +wy < 0} get label -1




Linear decision boundaries

y(x) = sign(w.x + wy)

Maps x to a 1D coordinate
, W.x+w,

{x:w.x+wy =0} isa x' =
hyperplane in R¢
o decision boundary
o W is direction of normal
o Wy is the offset
* {x:w.x +wy = 0} divides
R into two halfspaces
(regions)
o {x:w.x +wy = 0} get label +1

and
{x:w.x +wy < 0} get label -1

Iwll




Linear separators in 2D

Slide credit: Nati Srebro
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Linear separators in 2D

Slide credit: Nati Srebro
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Linear separators in 2D

Slide credit: Nati Srebro
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Margin of a classifier

* Margin: distance of
the closest
instance point to
the linear
hyperplane

e Large margins are

more stable <

o small
perturbations of
the data do not
change the
prediction -,

>

v
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Maximum margin classifier

+ S ={(x®,yD):i=12,..,N}
binary classes Y = {—1,1}
* Assume data is “linearly separable”
o Aw,wgy such that foralli = 1,2,..., N X
yW = sign(w. x® + WO)
= yOw.x® +wy) >0

* Maximum margin separator given by
y(i) (W. xD + WO)

W, W, = argmax min
’ WERd,WO L ”W”

{ J | J
f f

smallest margin of
margin sample i
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Maximum margin classifier

y(i) (W. xW + WO)

W,W, = argmax min
weR4, wyER ‘ lw||

* Claim 1: If w, W, is a solution,
then foranyy > 0, yw, yw, is also a solution

* Option 1: We can fix ||w|| = 1 to get

W, W, = argmax mjiny® (w. x4 WO)
Iwll=1,wg '
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Maximum margin classifier

YO (w. x® + )

W,W, = argmax min
weRd,w,ER " lwl|

* Claim 1: If W, W, is a solution,
then foranyy > 0, yw, ywy is also a solution

* Option 1: we can fix |[|w]|| = 1 to get

W, W, = argmax miny® (W. x® 4 WO)
Iwll=1 :

* Option 2: we can also fix min y(i) (W. x® 4 WO) =1
l

1

o margin now Is —
5 wl

o Instead of “increasing margin” we can “reduce norm”
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Max-margin classifier equivalent formulation

*| Solve: W, W, = argmin ||w]|? Hard margin
Y _ Support Vector
st Vi, yOw.x® +wo) =1 Machine (SVM)

* Claim 2: Equivalent to previous slide

w Wqo . .
- — —Xis solution for
lwll ~ lw]] . .
w, W, = ”mﬁalx1 min y®©w.x® + w,)
WI|= l

* Proof:

1. Let min y(i)(W. x4 VTJO) = 9, then min y® (%
l l

. W 1
2 = 1w <[5 =3
1% 1% | _
= x® 4 20 = min S@x ) o 2
izl izl i izl izl

3. min y(i)(

l

18



Maximum margin classifier formulations

* Original formulation

R YO (w.x® + wy)
W, W, = argmax min

weR4,wyER L lwl|

|
/\ "
Q€
+ Fixing [lw| = 1 & :

W, W, = argmax min y(i)(w. x® 4 WO) s.t. [[w]| =1
w,Wy i

* Fixing mln y(‘)(w x® 4w ) =1

w, WO = argmin ||[w||? s.t. Vi,yOw.x® +w,) > 1
w

Henceforth, w, will be absorbed into w by adding an additonal
feature of ‘1" to x
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Margin and norm

y @ wx®

* margin(w) = min—_ "

e Remember in regression: small norm solutions have low
complexity!
o Is this true for maximum margin classifiers?

o What about classification with logistic loss
¥ log(1 + exp(—y® w.xD))?

o how to do capacity control in maximum margin classifier
learning?

* Some places min y(i) w. xD referred as margin =2
l

implicitly assumes normalization
o min y® w. x is meaningless without knowing what ||w/|| is!
l



Solutions of hard margin SVM

W = argmin ||w||?* s.t, yOw x® >1 vi
w

* Theorem: w = Span{x(i): i =1,2, ...,N}
l.e., H{ﬁi: i =1,2,...,N}such thatw = Zi,[?i x@
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Solutions of hard margin SVM

W = argmin ||w||?* s.t, yOw x® >1 vi
w

* Theorem: w = Span{x(i): i = 1,2, ...,N}
i.e., H{Bi: i =1,2,...,N} such thatw = Ziﬁi x(®)
* Denote § = Span{x(i):i = 1,2, ...,N} and
St ={zeR%:Vizx; =0}
o Foranyz € R%, z =z5 + z51st. 25 € Sand z;1 € §*

o NlzlI? = llzsl? + ||zse |
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Solutions of hard margin SVM

W = argmin ||w||?* s.t, yOw x® >1 vi
w

* Theorem: w = Span{x(i): i = 1,2, ...,N}
l.e., H{Bi: i =1,2,...,N} such thatw = Ziﬁi x(®

* Denote § = Span{x(i):i = 1,2, ...,N} and
St ={zeR%:Vizx; =0}
o Foranyz € R%, z =z5 + z51st. 25 € Sand z;1 € §*

o NlzlI? = llzsl? + ||zse |

* Three step proof:
1. Decompose w = Wg + Wqu.
2 miny® w.x® > 1= miny® ws.x® > 1
(bécause Wsl.x(i) = 0 Vi) l

3. ifWer # 0,then [|[Wy]| < [|[W]|

23



Representer Theorem

W = argmin ||w|* s.t, yOw x® >1 vi
w

* Theorem: w = Span{x(i): 1 =1,2, ...,N} l.e.,
H{ﬁi: i =1,2,...,N}such thatw = Ziﬁi x(®)
o Special case of representor theorem

* Theorem (ext): additionally, {B;} also stisfies 8; = 0 for
all i such that y® w. x® > 1

* Proof?: (animation next slide)
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e lllustration credit: Nati Srebro 25



Representer Theorem

W = argmin ||w|* s.t, yOw x® >1 vi
w

e Theorem: 3{B;:i = 1,2, ..., N} such thatw = }; B; ¥

{B;} also satisfies 5; = 0 for all i such that y@O @ x® > 1

« SV(W) = {i: v w.xD = 1} datapoints closest to W
o called support vectors
o hence support vector machine

26



Representer Theorem

W = argmin ||w|* s.t, yOw x® >1 vi
w

e Theorem: 3{B;:i = 1,2, ..., N} such thatw = }; B; ¥
{,[?i} also satisfies ﬁi = (0 for all i such that y(i) w.x® > 1

« SV(W) = {i: v w.xD = 1} datapoints closest to W
o called support vectors
o hence support vector machine

How do we get w?
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Optimizing the SVM problem

W = argmin ||w||* s.t, yOw x® >1 vi
w

1. Can do sub-gradient descent (next class)

2. Special case of quadratic program
1

min- z'Pz+q'z
z 2
s.t. Gz< h Az=Db
o Change of variables W = ).;cqp ) BixD?

o Change of variables w = Y, f;x(¥1
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Optimizing the SVM problem

W = argmin ||w||* s.t, yOw x® >1 vi
w

* Change of variablesw = Y\, lle(l)l

N n
= mmzz,b’lﬁ x@ x0) s ¢, Z,B yWx® x0) > 1 vi

{Bi}
i=1j=1

= Bmﬁ?\n BTGB s.t.yD(GR); =1 Vi

* G € RVN with G;; = xV. xU) is called the gram matrix

e Convex program: quadratic programming
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The Kernel

min |[w||? s.t. yOw.x® >1 vi
w

— 1 T (i) . ]
_Egﬁ@qvﬁ GB s.t.y\W(GB); =1 Vi

* Optimization problem depends on x® only through the
values of G;; = xW_ xW fori,j € [N].
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The Kernel

min |[w||? s.t. yOw.x® >1 vi
w

— 1 T (i) . ]
_lgrelﬁ%r}vﬁ GB s.t.y\W(GB); =1 Vi

* Optimization problem depends on x® only through the
values of G;; = xW_ xW fori,j € [N].

 What about prediction?

W.x = Z'Bi x® x
;
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The Kernel

min |[w||? s.t. yOw.x® >1 vi
w

— 1 T (i) . ]
_Egﬁ@qvﬁ GB s.t.y\W(GB); =1 Vi

* Optimization problem depends on x® only through the
values of G;; = xW_ xW fori,j € [N].
 What about prediction?

W.x = Z,Bi x® x
;

* Function K(x,x") = x.x" is called the Kernel

* Learning non-linear classifiers using feature transformations,

i.e., f,w(x) = w.p(x) for some ¢ (x)

o only thing we need to know is K4 (x, x") = K(¢(x), p(x"))
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Kernels As Prior Knowledge

* If we think that positive examples can (almost) be
separated by some ellipse:

then we should use p.olynomials of degree 2

* A Kernel encodes a measure of similarity between
objects. A bit like NN, except that it must be a valid
inner product function.

Slide credit: Nati Srebro
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