Day 4: Classification, support vector machines

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

21 June 2018

Topics so far

- Supervised learning, linear regression
- Linear regression
 - Overfitting, bias variance trade-off
 - Ridge and lasso regression, gradient descent
- Yesterday
 - Classification, logistic regression
 - Regularization for logistic regression
 - Multi-class classification
- Today
 - Maximum margin classifiers
 - $_{\circ}$ Kernel trick

Classification

- Supervised learning: estimate a mapping f from input $x \in \mathcal{X}$ to output $y \in \mathcal{Y}$
 - Regression $\mathcal{Y} = \mathbb{R}$ or other continuous variables
 - $_{\circ}$ Classification $\mathcal Y$ takes discrete set of values
 - Examples:

 $\square \mathcal{Y} = \{\text{spam, nospam}\},\$

 \Box digits (not values) $\mathcal{Y} = \{0, 1, 2, \dots, 9\}$

 Many successful applications of ML in vision, speech, NLP, healthcare

Parametric classifiers

- $\mathcal{H} = \{ \boldsymbol{x} \to \boldsymbol{w} . \, \boldsymbol{x} + w_0 : \boldsymbol{w} \in \mathbb{R}^d, w_0 \in \mathbb{R} \}$
- $\hat{y}(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\widehat{w}}, \boldsymbol{x} + \boldsymbol{\widehat{w}}_0)$
- $\hat{w}. x + \hat{w}_0 = 0$ (linear) decision boundary or separating *hyperplane* separates \mathbb{R}^d into two *halfspaces* (regions) $\hat{w}. x + \hat{w}_0 > 0$ gets label 1 and
 - $\widehat{\boldsymbol{w}}.\boldsymbol{x} + \widehat{w}_0 < 0$ gets label -1
- more generally, $\hat{y}(x) = \operatorname{sign}(\hat{f}(x))$

 \rightarrow decision boundary is $\hat{f}(\mathbf{x}) = 0$

Surrogate Losses

• The correct loss to use is 0-1 loss *after* thresholding $\ell^{01}(f(x), y) = \mathbf{1}[\operatorname{sign}(f(x)) \neq y]$ $= \mathbf{1}[\operatorname{sign}(f(x)y) < 0]$

Surrogate Losses

- The correct loss to use is 0-1 loss *after* thresholding $\ell^{01}(f(x), y) = \mathbf{1}[\operatorname{sign}(f(x)) \neq y]$ $= \mathbf{1}[\operatorname{sign}(f(x)y) < 0]$
- Linear regression uses $\ell^{LS}(f(x), y) = (f(x) y)^2$

Surrogate Losses

- Hard to optimize over ℓ⁰¹, find another loss ℓ(f(x), y)
 Convex (for any fixed y) → easier to minimize
 An upper bound of ℓ⁰¹ → small ℓ ⇒ small ℓ⁰¹
- Satisfied by squared loss

 \rightarrow but has "large" loss even when $\ell^{01}(f(x), y) = 0$

Two more surrogate losses in in this course

0

 $f(x)v \rightarrow$

Logistic regression: ERM on surrogate loss

•
$$S = \{ (\mathbf{x}^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}, X = \mathbb{R}^d, Y = \{-1, 1\}$$

- Linear model $f(\mathbf{x}) = f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + w_0$
- Minimize training loss

$$\widehat{\boldsymbol{w}}, \widehat{w}_0 = \underset{\boldsymbol{w}, w_0}{\operatorname{argmin}} \sum_{i} \log \left(1 + \exp(-(\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0) \boldsymbol{y}^{(i)}) \right)$$

• Output classifier $\hat{y}(x) = \operatorname{sign}(w.x + w_0)$

Logistic Regression

$$\widehat{\boldsymbol{w}}, \widehat{w}_0 = \underset{\boldsymbol{w}, w_0}{\operatorname{argmin}} \sum_i \log \left(1 + \exp(-(\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0) \boldsymbol{y}^{(i)}) \right)$$

- Convex optimization problem
- Can solve using gradient descent
- Can also add usual regularization: ℓ_2 , ℓ_1

Linear decision boundaries

- $\hat{y}(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{w}.\,\boldsymbol{x} + w_0)$
- {x: w. x + w₀ = 0} is a hyperplane in R^d

 decision boundary
 w is direction of normal
 w₀ is the offset

 {x: w. x + w₀ = 0} divides R^d into two halfspaces (regions)
 - $\{x: w. x + w_0 \ge 0\}$ get label +1 and

 ${x: w. x + w_0 < 0}$ get label -1

Linear decision boundaries

$$\hat{y}(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{w}.\,\boldsymbol{x} + w_0)$$

- { $x: w. x + w_0 = 0$ } is a hyperplane in \mathbb{R}^d \circ decision boundary
 - *w* is direction of normal *w*₀ is the offset
- { $x: w. x + w_0 = 0$ } divides \mathbb{R}^d into two halfspaces (regions)
 - $\{x: w. x + w_0 \ge 0\}$ get label +1 and

 ${x: w. x + w_0 < 0}$ get label -1

Margin of a classifier

- Margin: distance of the closest instance point to the linear hyperplane
- Large margins are more stable
 - small perturbations of the data do not change the prediction

Maximum margin classifier

- $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$ binary classes $\mathcal{Y} = \{-1, 1\}$
- Assume data is "linearly separable"

∘ ∃ \boldsymbol{w}, w_0 such that for all i = 1, 2, ..., N $y^{(i)} = \operatorname{sign}(\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0)$ $\Rightarrow y^{(i)}(\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0) > 0$

• Maximum margin separator given by $\widehat{w}, \widehat{w}_0 = \underset{w \in \mathbb{R}^d \ w_0}{\operatorname{argmax}} \min_i \frac{y^{(i)}(w, x^{(i)} + w_0)}{\|w\|}$

Maximum margin classifier

$$\widehat{\boldsymbol{w}}, \widehat{\boldsymbol{w}}_0 = \underset{\boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{w}_0 \in \mathbb{R}}{\operatorname{argmax}} \quad \min_i \frac{y^{(i)} (\boldsymbol{w}, \boldsymbol{x}^{(i)} + \boldsymbol{w}_0)}{\|\boldsymbol{w}\|}$$

- Claim 1: If \hat{w} , \hat{w}_0 is a solution, then for any $\gamma > 0$, $\gamma \hat{w}$, $\gamma \hat{w}_0$ is also a solution
- Option 1: We can fix ||w|| = 1 to get

$$\widehat{\boldsymbol{w}}, \widehat{w}_0 = \underset{\|\boldsymbol{w}\|=1, w_0}{\operatorname{argmax}} \quad \underset{i}{\min} y^{(i)} \big(\boldsymbol{w}. \, \boldsymbol{x}^{(i)} + w_0 \big)$$

Maximum margin classifier

$$\widehat{\boldsymbol{w}}, \widehat{w}_0 = \underset{\boldsymbol{w} \in \mathbb{R}^d, w_0 \in \mathbb{R}}{\operatorname{argmax}} \quad \min_i \frac{y^{(i)} (\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0)}{\|\boldsymbol{w}\|}$$

- Claim 1: If \hat{w} , \hat{w}_0 is a solution, then for any $\gamma > 0$, $\gamma \hat{w}$, $\gamma \hat{w}_0$ is also a solution
- Option 1: we can fix ||w|| = 1 to get

$$\widehat{\boldsymbol{w}}, \widehat{w}_0 = \underset{\|\boldsymbol{w}\|=1}{\operatorname{argmax}} \quad \underset{i}{\min} y^{(i)} \big(\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0 \big)$$

• Option 2: we can also fix $\min_{i} y^{(i)} (w \cdot x^{(i)} + w_0) = 1$

$$\circ$$
 margin now is $\frac{1}{\|w\|}$

 $_{\odot}$ Instead of "increasing margin" we can "reduce norm"

Max-margin classifier equivalent formulation

• Solve: \widetilde{w} , $\widetilde{w}_0 = \underset{w}{\operatorname{argmin}} ||w||^2$ s.t. $\forall i$, $y^{(i)}(w.x^{(i)} + w_0) \ge 1$ Hard margin Support Vector Machine (SVM)

- Claim 2: Equivalent to previous slide $\rightarrow \frac{\widetilde{w}}{\|\widetilde{w}\|}, \frac{\widetilde{w}_0}{\|\widetilde{w}\|}$ is solution for $\widehat{w}, \widehat{w}_0 = \max_{\|w\|=1} \min_i y^{(i)}(w, x^{(i)} + w_0)$
- Proof:

1. Let
$$\min_{i} y^{(i)} (\widehat{w} \cdot x^{(i)} + \widehat{w}_{0}) = \widehat{\gamma}$$
, then $\min_{i} y^{(i)} \left(\frac{\widehat{w}}{\widehat{\gamma}} \cdot x^{(i)} + \frac{\widehat{w}_{0}}{\widehat{\gamma}}\right) \ge 1$
2. $\Rightarrow \|\widetilde{w}\| \le \left\|\frac{\widehat{w}}{\widehat{\gamma}}\right\| = \frac{1}{\widehat{\gamma}}$
3. $\min_{i} y^{(i)} \left(\frac{\widetilde{w}}{\|\widetilde{w}\|} \cdot x^{(i)} + \frac{\widetilde{w}_{0}}{\|\widetilde{w}\|}\right) = \min_{i} \frac{y^{(i)} (\widetilde{w} \cdot x^{(i)} + \widetilde{w}_{0})}{\|\widetilde{w}\|} \ge \frac{1}{\|\widetilde{w}\|} \ge \widehat{\gamma}$

Maximum margin classifier formulations

Henceforth, w_0 will be absorbed into w by adding an additonal feature of '1' to x

Margin and norm

- margin(\boldsymbol{w}) = min_i $\frac{y^{(i)} \boldsymbol{w}.x^{(i)}}{\|\boldsymbol{w}\|}$
- Remember in regression: small norm solutions have low complexity!
 - $_{\rm \circ}\,$ Is this true for maximum margin classifiers?
 - what about classification with logistic loss $\sum_i \log(1 + \exp(-y^{(i)} \mathbf{w} \cdot \mathbf{x}^{(i)}))?$
 - how to do capacity control in maximum margin classifier learning?
- Some places $\min_{i} y^{(i)} w. x^{(i)}$ referred as margin \rightarrow implicitly assumes normalization

 $\circ \min_{i} y^{(i)} w. x^{(i)}$ is meaningless without knowing what ||w|| is!

Solutions of hard margin SVM

 $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \quad s.t., \quad y^{(i)} \boldsymbol{w}.\boldsymbol{x}^{(i)} \ge 1 \quad \forall i$ • Theorem: $\widehat{\boldsymbol{w}} = span\{\boldsymbol{x}^{(i)}: i = 1, 2, ..., N\}$ i.e., $\exists\{\widehat{\beta}_i: i = 1, 2, ..., N\} \text{ such that } \widehat{\boldsymbol{w}} = \sum_i \widehat{\beta}_i \boldsymbol{x}^{(i)}$

Solutions of hard margin SVM

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^{2} \quad s.t., \qquad y^{(i)} \, \boldsymbol{w}. \boldsymbol{x}^{(i)} \ge 1 \quad \forall i$$
• Theorem: $\widehat{\boldsymbol{w}} = span\{\boldsymbol{x}^{(i)}: i = 1, 2, ..., N\}$
i.e., $\exists \{\widehat{\beta}_{i}: i = 1, 2, ..., N\}$ such that $\widehat{\boldsymbol{w}} = \sum_{i} \widehat{\beta}_{i} \; \boldsymbol{x}^{(i)}$
• Denote $\mathcal{S} = span\{\boldsymbol{x}^{(i)}: i = 1, 2, ..., N\}$ and
 $\mathcal{S}^{\perp} = \{\boldsymbol{z} \in \mathbb{R}^{d}: \forall i, \boldsymbol{z}. \, \boldsymbol{x}_{i} = 0\}$
 \circ For any $\boldsymbol{z} \in \mathbb{R}^{d}, \boldsymbol{z} = \boldsymbol{z}_{\mathcal{S}} + \boldsymbol{z}_{\mathcal{S}^{\perp}}$ s.t. $\boldsymbol{z}_{\mathcal{S}} \in \mathcal{S}$ and $\boldsymbol{z}_{\mathcal{S}^{\perp}} \in \mathcal{S}^{\perp}$
 $\circ \|\boldsymbol{z}\|^{2} = \|\boldsymbol{z}_{\mathcal{S}}\|^{2} + \|\boldsymbol{z}_{\mathcal{S}^{\perp}}\|^{2}$

Solutions of hard margin SVM

$$\widehat{w} = \underset{w}{\operatorname{argmin}} \|w\|^{2} \quad s.t., \qquad y^{(i)} w. x^{(i)} \ge 1 \quad \forall i$$

• Theorem: $\widehat{w} = span\{x^{(i)}: i = 1, 2, ..., N\}$
i.e., $\exists \{\widehat{\beta}_{i}: i = 1, 2, ..., N\}$ such that $\widehat{w} = \sum_{i} \widehat{\beta}_{i} \ x^{(i)}$
• Denote $\mathcal{S} = span\{x^{(i)}: i = 1, 2, ..., N\}$ and
 $\mathcal{S}^{\perp} = \{z \in \mathbb{R}^{d}: \forall i, z. x_{i} = 0\}$
 \circ For any $z \in \mathbb{R}^{d}, z = z_{\mathcal{S}} + z_{\mathcal{S}^{\perp}}$ s.t. $z_{\mathcal{S}} \in \mathcal{S}$ and $z_{\mathcal{S}^{\perp}} \in \mathcal{S}^{\perp}$
 $\circ \|z\|^{2} = \|z_{\mathcal{S}}\|^{2} + \|z_{\mathcal{S}^{\perp}}\|^{2}$

• Three step proof:

- 1. Decompose $\widehat{w} = \widehat{w}_s + \widehat{w}_{s^{\perp}}$.
- 2. $\min_{i} y^{(i)} \widehat{w} \cdot x^{(i)} \ge 1 \Rightarrow \min_{i} y^{(i)} \widehat{w}_{\mathcal{S}} \cdot x^{(i)} \ge 1$ (because $\widehat{w}_{\mathcal{S}^{\perp}} \cdot x^{(i)} = 0 \forall i$)
- 3. if $\widehat{w}_{\mathcal{S}^{\perp}} \neq 0$, then $\|\widehat{w}_{\mathcal{S}}\| < \|\widehat{w}\|$

Representer Theorem

- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \quad s.t., \quad y^{(i)} \, \boldsymbol{w}. \, \boldsymbol{x}^{(i)} \ge 1 \quad \forall i$
- Theorem: $\widehat{w} = span\{x^{(i)}: i = 1, 2, ..., N\}$ i.e.,
- $\exists \{\hat{\beta}_i : i = 1, 2, ..., N\} \text{ such that } \hat{\boldsymbol{w}} = \sum_i \hat{\beta}_i \boldsymbol{x}^{(i)}$
 - $_{\circ}$ Special case of representor theorem
- Theorem (ext): additionally, $\{\hat{\beta}_i\}$ also stisfies $\hat{\beta}_i = 0$ for all i such that $y^{(i)} w. x^{(i)} > 1$
- Proof?: (animation next slide)

Representer Theorem

- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \quad s.t., \quad y^{(i)} \, \boldsymbol{w}. \, \boldsymbol{x}^{(i)} \ge 1 \quad \forall i$
- Theorem: $\exists \{\hat{\beta}_i : i = 1, 2, ..., N\}$ such that $\hat{w} = \sum_i \hat{\beta}_i x^{(i)}$

 $\{\hat{\beta}_i\}$ also satisfies $\hat{\beta}_i = 0$ for all i such that $y^{(i)} \hat{w} \cdot x^{(i)} > 1$

- $SV(\widehat{w}) = \{i: y^{(i)} \ \widehat{w}. \ x^{(i)} = 1\}$ datapoints closest to \widehat{w}
 - called support vectors

 $_{\circ}$ hence support vector machine

$$\widehat{\boldsymbol{w}} = \sum_{i \in SV(\widehat{w})} \widehat{\beta}_i \boldsymbol{x}^{(i)}$$

Representer Theorem

- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \quad s.t., \quad y^{(i)} \, \boldsymbol{w}. \, \boldsymbol{x}^{(i)} \ge 1 \quad \forall i$
- Theorem: $\exists \{\hat{\beta}_i : i = 1, 2, ..., N\}$ such that $\hat{w} = \sum_i \hat{\beta}_i x^{(i)}$

 $\{\hat{\beta}_i\}$ also satisfies $\hat{\beta}_i = 0$ for all i such that $y^{(i)} \hat{w} \cdot x^{(i)} > 1$

- $SV(\widehat{w}) = \{i: y^{(i)} \ \widehat{w}. \ x^{(i)} = 1\}$ datapoints closest to \widehat{w}
 - called support vectors

 $_{\circ}$ hence support vector machine

$$\widehat{\boldsymbol{w}} = \sum_{i \in SV(\widehat{w})} \widehat{\beta}_i \boldsymbol{x}^{(i)}$$

How do we get \widehat{w} ?

Optimizing the SVM problem

- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \quad s.t., \quad y^{(i)} \, \boldsymbol{w}. \, \boldsymbol{x}^{(i)} \ge 1 \quad \forall i$
- 1. Can do sub-gradient descent (next class)
- 2. Special case of quadratic program

 $\min_{z} \frac{1}{2} z^{\top} P z + q^{\top} z$ s.t. $Gz \le h, Az = b$

• Change of variables $\widehat{w} = \sum_{i \in SV(\widehat{w})} \widehat{\beta}_i x^{(i)}$?

• Change of variables $\hat{w} = \sum_{i=1}^{N} \hat{\beta}_{i} x^{(i)}!$

Optimizing the SVM problem

- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \quad s.t., \qquad y^{(i)} \, \boldsymbol{w}. \, \boldsymbol{x}^{(i)} \ge 1 \ \forall i$
- Change of variables $w = \sum_{i=1}^{N} \beta_i x^{(i)}!$

$$\equiv \min_{\{\beta_i\}} \sum_{i=1}^{N} \sum_{j=1}^{n} \beta_i \beta_j x^{(i)} \cdot x^{(j)} \quad s.t. \quad \sum_{j=1}^{N} \beta_j y^{(i)} x^{(i)} \cdot x^{(j)} \ge 1 \quad \forall i$$

$$= \min_{\boldsymbol{\beta} \in \mathbb{R}^N} \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{G} \boldsymbol{\beta} \quad s.t. y^{(i)} (\boldsymbol{G} \boldsymbol{\beta})_i \ge 1 \quad \forall i$$

- $G \in \mathbb{R}^{N \times N}$ with $G_{ij} = x^{(i)}$. $x^{(j)}$ is called the gram matrix
- Convex program: quadratic programming

The Kernel

$$\min_{w} \|w\|^2 \quad s.t. \quad y^{(i)} \ w. \ x^{(i)} \ge 1 \quad \forall i$$
$$\equiv \min_{\beta \in \mathbb{R}^N} \beta^\top G \beta \quad s.t. \ y^{(i)} (G \beta)_i \ge 1 \quad \forall i$$

• Optimization problem depends on $x^{(i)}$ only through the values of $G_{ij} = x^{(i)}$. $x^{(j)}$ for $i, j \in [N]$.

The Kernel

$$\min_{w} \|w\|^2 \quad s.t. \quad y^{(i)} \ w. \ x^{(i)} \ge 1 \quad \forall i$$
$$\equiv \min_{\beta \in \mathbb{R}^N} \beta^\top G \beta \quad s.t. \ y^{(i)} (G \beta)_i \ge 1 \quad \forall i$$

- Optimization problem depends on $x^{(i)}$ only through the values of $G_{ij} = x^{(i)}$. $x^{(j)}$ for $i, j \in [N]$.
- What about prediction?

$$\widehat{\boldsymbol{w}}.\boldsymbol{x} = \sum_{i} \beta_{i} \boldsymbol{x}^{(i)}.\boldsymbol{x}$$

The Kernel

$$\min_{w} \|w\|^2 \quad s.t. \quad y^{(i)} \ w. \ x^{(i)} \ge 1 \quad \forall i$$
$$\equiv \min_{\beta \in \mathbb{R}^N} \beta^\top G \beta \quad s.t. \ y^{(i)} (G \beta)_i \ge 1 \quad \forall i$$

- Optimization problem depends on $x^{(i)}$ only through the values of $G_{ij} = x^{(i)}$. $x^{(j)}$ for $i, j \in [N]$.
- What about prediction?

$$\widehat{\boldsymbol{w}}.\boldsymbol{x} = \sum_{i} \beta_{i} \boldsymbol{x}^{(i)}.\boldsymbol{x}$$

- Function $K(x, x') = x \cdot x'$ is called the Kernel
- Learning non-linear classifiers using feature transformations, i.e., $f_w(x) = w \cdot \phi(x)$ for some $\phi(x)$

• only thing we need to know is $K_{\phi}(x, x') = K(\phi(x), \phi(x'))$

Kernels As Prior Knowledge

 If we think that positive examples can (almost) be separated by some ellipse:

then we should use polynomials of degree 2

• A Kernel encodes a measure of *similarity* between objects. A bit like NN, except that it must be a valid inner product function.