Day 3: Classification, logistic regression

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

20 June 2018

Topics so far

- Supervised learning, linear regression
- Yesterday
	- ^o Overfitting,
	- ^o Ridge and lasso Regression
	- \circ Gradient descent
- Today
	- \circ Bias variance trade-off
	- ^o Classification
	- \circ Logistic regression
	- \circ Regularization for logistic regression
	- \circ Classification metrics

Bias-variance tradeoff

Empirical vs population loss

- **Population distribution** Let $(x, y) \sim \mathcal{D}$
- We have
	- \circ Loss function $\ell(\hat{y}, y)$
	- \circ Hypothesis class $\mathcal H$
	- \circ Training data $S = \big\{ \big(x^{(i)}, y^{(i)}\big) \colon \! i = 1,2,...\,, N \big\} \sim_{\text{iid}} \mathcal{D}^N$
		- Think of S as random variable
- What we really want $f \in \mathcal{H}$ to minimize **population loss** $L_{\mathcal{D}}(f) \triangleq \mathbf{E}_{\mathcal{D}}[\ell(f(x), y)] = \begin{vmatrix} \ell(f(x), y) \end{vmatrix}$ (x,y) $Pr(x, y)$
- ERM minimizes **empirical loss**

$$
L_{S}(f) \triangleq \widehat{\mathbf{E}}_{S}[\ell(f(x), y)] = \frac{1}{N} \sum_{i=1}^{N} \ell(f(x^{(i)}), y^{(i)})
$$

e.g,
$$
Pr(x) = uniform(0,1)
$$

\n $y = w^*.x + \epsilon$ where $\epsilon = \mathcal{N}(0,0.1)$
\n $\Rightarrow Pr(y|x) = \mathcal{N}(w^*.x, 0.1)$
\n $Pr(x, y) = Pr(x) Pr(y|x)$

Empirical vs population loss

$$
L(f) \triangleq \mathbf{E}_{\mathcal{D}}[\ell(f(x), y)] = \int_{(x,y)} \ell(f(x), y) \Pr(x, y)
$$

$$
L_S(f) \triangleq \hat{\mathbf{E}}_S[\ell(f(x), y)] = \frac{1}{N} \sum_{i=1}^{N} \ell(f(x^{(i)}), y^{(i)})
$$

 $\overline{}$ $\overline{\$

- \hat{f}_S from some model **overfits** to S if there is $f^* \in \mathcal{H}$ with $\hat{\mathbf{E}}_{\mathcal{S}}[\ell(\hat{f}_{\mathcal{S}}(x), y)] \leq \hat{\mathbf{E}}_{\mathcal{S}}[\ell(f^*(x), y)]$ but $\mathbf{E}_{\mathcal{D}}[\ell(\hat{f}_{\mathcal{S}}(x), y)] \gg \mathbf{E}_{\mathcal{D}}[\ell(f^*(x), y)]$
- If f is independent of S_{train} then both $L_{S_{train}}(f)$ and $L_{S_{test}}(f)$ are good approximations of $L_{\mathcal{D}}(f)$
- But generally, \hat{f} depends on S_{train} . Why?
	- $\sim \ L_{S_{train}}(\hat{f}_{S_{train}})$ is no more a good approximation of $L_{\mathcal{D}}(f)$
	- $\sim \ L_{S_{test}}(\hat{f}_{S_{train}})$ is still a good approximation of $L_\mathcal{D}(f)$ since $\hat{f}_{S_{train}}$ is independent of S_{test}

Optimum Unrestricted Predictor

• Consider population squared loss

$$
\operatorname*{argmin}_{f \in \mathcal{H}} L(f) \triangleq \mathbf{E}_{\mathcal{D}}[\ell(f(x), y)] = \mathbf{E}_{(x, y)}[(f(x) - y)^2]
$$

• Say H is unrestricted – any function $f: x \rightarrow y$ is allowed

$$
L(f) = \mathbf{E}_{(x,y)}[(f(x) - y)^2] = \mathbf{E}_x [\mathbf{E}_y[(f(x) - y)^2 |x]]
$$

\n
$$
= \mathbf{E}_x [\mathbf{E}_y [(f(x) - \mathbf{E}_y[y|x] + \mathbf{E}_y[y|x] - y)^2 |x]]
$$

\n
$$
= \mathbf{E}_x [\mathbf{E}_y [(f(x) - \mathbf{E}_y[y|x])^2 |x]] + \mathbf{E}_x [\mathbf{E}_y [(\mathbf{E}_y[y|x] - y)^2 |x]
$$

\n+ 2 $\mathbf{E}_x [\mathbf{E}_y [(f(x) - \mathbf{E}_y[y|x]) (\mathbf{E}_y[y|x] - y)|x]]$
\n
$$
= 0
$$

\n
$$
= \mathbf{E}_x [(f(x) - \mathbf{E}_y[y|x])^2] + \mathbf{E}_{x,y} [(\mathbf{E}_y[y|x] - y)^2]
$$

\n
$$
= 0
$$

\n
$$
= \mathbf{E}_x [(f(x) - \mathbf{E}_y[y|x])^2] + \mathbf{E}_{x,y} [(\mathbf{E}_y[y|x] - y)^2]
$$

\n
$$
= 0
$$

Bias variance decomposition

• Best unrestricted predictor $f^{**}(x) = \mathbf{E}_y[y|x]$

•
$$
L(f_S) = \mathbf{E}_x[(f_S(x) - f^{**}(x))^2] + \mathbf{E}_{x,y}[(f^{**}(x) - y)^2]
$$

•
$$
\mathbf{E}_S L(f_S) = \mathbf{E}_S \mathbf{E}_x \left[(f_S(x) - f^{**}(x))^2 \right] + noise
$$

\n $\mathbf{E}_S \mathbf{E}_x \left[(f_S(x) - f^{**}(x))^2 \right] = \mathbf{E}_x \left[\mathbf{E}_S \left[(f_S(x) - f^{**}(x))^2 \mid x \right] \right]$
\n $= \mathbf{E}_x \mathbf{E}_S \left[(f_S(x) - \mathbf{E}_S [f_S(x)] + \mathbf{E}_S [f_S(x)] - f^{**}(x))^2 \mid x \right]$
\n $= \mathbf{E}_x \mathbf{E}_S [(f_S(x) - \mathbf{E}_S [f_S(x)])^2 \mid x] + \mathbf{E}_x \left[(\mathbf{E}_S [f_S(x)] - f^{**}(x))^2 \right]$
\n $+ 2 \mathbf{E}_x \left[\mathbf{E}_S [f_S(f_S(x)] - f^{**}(x)) (f_S(x) - \mathbf{E}_S [f_S(x)]) \mid x \right]$
\n $= \mathbf{E}_{S,x} [(f_S(x) - \mathbf{E}_S [f_S(x)])^2] + \mathbf{E}_x \left[(\mathbf{E}_S [f_S(x)] - f^{**}(x))^2 \right]$

$$
\mathbf{E}_{S}L(f_{S}) = \mathbf{E}_{S,x} [(f_{S}(x) - \mathbf{E}_{S}[f_{S}(x)])^{2}]
$$

+
$$
\mathbf{E}_{x} [(\mathbf{E}_{S}[f_{S}(x)] - f^{**}(x))^{2}]
$$

+
$$
\mathbf{E}_{x,y} [(f^{**}(x) - y)^{2}]
$$

= variance $+ *bias*²$ + noise

Bias-variance tradeoff

$$
\mathbf{E}_{S}L(f_{S}) = \mathbf{E}_{S,x} [(f_{S}(x) - \mathbf{E}_{S}[f_{S}(x)])^{2}]
$$

+
$$
\mathbf{E}_{x} [(\mathbf{E}_{S} [f_{S}(x)] - f^{**}(x))^{2}]
$$

+
$$
\mathbf{E}_{x,y} [(f^{**}(x) - y)^{2}]
$$

= variance $+ \text{ bias}^2$ + noise

- $f_s \in \mathcal{H}$
- noise is irreducible
- variance can reduced by
	- \circ get more data
	- \circ make f_S less sensitive to S
		- **E** less number of candidates in H to choose from \rightarrow less variance
		- **•** reducing the "complexity" of model class H decreases variance

• bias²
$$
\geq \min_{f \in \text{conv}(\mathcal{H})} \mathbf{E}_x \left[\left(f(x) - f^{**}(x) \right)^2 \right]
$$

E expanding model class H decreases bias

Model complexity

- reducing the complexity of model class H decreases variance
- expanding model class H decreases bias
- Complexity \approx number of choices in \mathcal{H}
	- For any loss L, for all $f \in \mathcal{H}$ with probability greater than 1δ

$$
L(f) \le L_S(f) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{N}}
$$

- many other variants for infinite cardinality classes
- often bounds are loose
- Complexity \approx number of degrees of freedom
	- e.g., number of parameters to estimate
	- more data \rightarrow can fit more complex models
- Is $H_1 = \{ x \rightarrow w_0 + w_1, x w_2, x \}$ more complex than $H_2 =$ ${x \to w_0 + w_1 \cdot x}$?

What we need is how many different "behaviors" we can get on same S

Summary

• Overfitting

- \circ What is overfitting?
- o How to detect overfitting?
- o Avoiding overfitting using model selection
- Bias variance tradeoff

Classification

- Supervised learning: estimate a mapping f from input $x \in \mathcal{X}$ to output $y \in \mathcal{Y}$
	- \circ **Regression** $\mathcal{Y} = \mathbb{R}$ or other continuous variables
	- \circ **Classification** \mathcal{Y} takes discrete set of values
		- § Examples:

 $q = {spam, nospam},$

□ digits (not values) $\mathcal{Y} = \{0,1,2,\dots,9\}$

• Many successful applications of ML in vision, speech, NLP, healthcare

• Label-values do not have meaning

 \circ $y = {span, nospam}$ or $y = {0,1}$ or $y = {-1,1}$

• Ordering of labels does not matter (for most parts)

 σ $f(x) =$ "0" when $y =$ "1" is as bad as $f(x) =$ "9" when $y =$ "1"

- Often $f(x)$ does not return labels y
	- \circ e.g. in binary classification with $\mathcal{Y} = \{-1,1\}$ we often estimate $f: \mathcal{X} \to \mathbb{R}$ and then post process to get $\hat{y}(f(x)) = \mathbf{1}[f(x) \geq 0]$
	- \circ mainly for computational reasons
		- remember, we need to solve $\min_{f \in \mathcal{H}} \sum_i \ell(f\big(x^{(i)}\big), y^{(i)})$
		- **E** discrete values \rightarrow combinatorial problems \rightarrow hard to solve
	- \circ more generally $\mathcal{H} \subset \{f: \mathcal{X} \to \mathbb{R}\}$ and loss $\ell: \mathbb{R} \times \mathcal{Y} \to \mathbb{R}$
		- compare to regression, where typically $\mathcal{H} \subset \{f : \mathcal{X} \to \mathcal{Y}\}\$ and $\text{loss } \ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Non-parametric classifiers

Nearest Neighbor (NN) Classifier

- Training data $\mathrm{S} = \{ \left(x^{(i)}, y^{(i)} \right) : i = 1, 2, ..., N \}$
- Want to predict label of new point x
- Nearest Neighbor Rule

 \circ Find the closest training point: $i^* = \arg\min_i \rho(x, x^{(i)})$

○ Predict label of x as $\hat{y}(x) = y^{(i^*)}$

- Computation
	- \circ Training time: Do nothing
	- \circ Test time: search the training set for a NN

Figure credit: Nati Srebro 13 Australia 13 Australia 13 Australia 13 Australia 13 Australia 13 Australia 13 Au

Nearest Neighbor (NN) Classifier

• Where is the main model?

$$
\circ i^* = \arg\min_i \rho(x, x^{(i)})
$$

 \circ What is the right "distance" between images? Between sound waves? Between sentences?

 $\phi \in \mathsf{Often} \ \rho(x, x') = \|\phi(x) - \phi(x')\|_2 \ \text{or other norms } \|x - x'\|_1$

Slide credit: Nati Srebro 14

k-Nearest Neighbor (kNN) classifier

- Training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$
- Want to predict label of new point x
- k-Nearest Neighbor Rule

 \circ Find the \boldsymbol{k} closest training point: $i_1^*, i_2^*, ...$, i_k^* \circ Predict label of x as

$$
\hat{y}(x) = \text{majority}(y^{(i_1^*)}, y^{(i_2^*)}, \dots, y^{(i_k^*)})
$$

- Computation
	- \circ Training time: Do nothing
	- \circ Test time: search the training set for k NNs

k-Nearest Neighbor

• Advantages

- \circ no training
- \circ universal approximator non-parametric
- •Disadvantages
	- \circ not scalable
		- test time memory requirement
		- test time computation
	- oeasily overfits with small data

Training vs test error

1-NN

- Training error?
	- 0
- Test error?
	- Depends on $Pr(x, y)$

k-NN

- Training error: can be greater than 0
- Test error: again depends on $Pr(x, y)$

k-Nearest Neighbor: Data Fit / Complexity Tradeoff

Slide credit: Nati Srebro 18

Space partition

- kNN partitioning of X (or \mathbb{R}^d) into regions of +1 and -1
- What about discrete valued features x ?
- Even for continuous x , can we get more structured partitions?
	- \circ easy to describe

• e.g., $R_2 = \{x: x_1 < t_1 \text{ and } x_2 > t_2\}$ o reduces degrees of freedom

• Any non-overlapping partition using only (hyper) rectangles \rightarrow representable by a tree

- Focus on binary trees (trees with at most two children at each node)
- How to create trees?
- What is a "good" tree?
	- \circ Measure of "purity" at each leaf node where each leaf node corresponding to a region R_i

purity $(tree) = \sum_{R_i} |#$ blue at $R_i - #$ red at R_i

There are various metrics of (im)purity that are used in practice, but the rough idea is the same

- How to create trees?
- Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$, where $y^{(i)} \in \{blue, red\}$
- At each point,

$$
purity(tree) = \sum_{\text{leaf}} |# \text{ blue at leaf} - # \text{ red at leaf}|
$$

• Start with all data at root

$$
\circ
$$
 only one *leaf* = *root*. What is
purity(*tree*)?

- How to create trees?
- Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$, where $y^{(i)} \in \{blue, red\}$
- At each point,

$$
purity(tree) = \sum_{\text{leaf}} |# \text{ blue at leaf} - # \text{ red at leaf}|
$$

- Start with all data at root
	- \circ only one $leaf = root$. What is purity $(tree)$?
- Create a split based on a rule that **increases** the amount of "**purity**" of tree.

 \circ How complex can the rules be?

- How to create trees?
- Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$, where $y^{(i)} \in \{blue, red\}$
- At each point,

purity $(tree) = \sum |\#$ blue at leaf − # red at leaf leaf

- Start with all data at root
	- \circ only one $leaf = root$. What is purity $(tree)$?
- Create a split based on a rule that **increases** the amount of "**purity**" of tree.
	- \circ How complex can the rules be?
- Repeat

When to stop? what is the complexity of a DT?

• Advantages

- ^o interpretable
- \circ easy to deal with non-numeric features
- \circ natural extensions to multi-class, multi-label

• Disadvantages

- \circ not scalable
- \circ hard decisions non-smooth decisions
- \circ often overfits in spite of regularization
- Check CART package in scikit-learn

Parametric classifiers

- What is the equivalent of linear regression?
	- \circ something easy to train

 \circ something easy to use at test time

- $f(x) = f_w(x) = w \cdot x + w_0$
- $\mathcal{H} = \{f_w = x \to w, x + w_0 : w \in \mathbb{R}^d, w_0 \in \mathbb{R}\}\$
- but $f(x) \notin \{-1,1\}!$ how do we get labels?

 \circ reasonable choice

 $\widehat{y}(\pmb{x}) = 1$ if $f_{\widehat{\pmb{w}}}(\pmb{x}) \geq 0$ and $\widehat{y}(\pmb{x}) = -1$ otherwise

 \circ linear classifier: $\hat{y}(x) = \text{sign}(\hat{w}.x + \hat{w}_0)$

Parametric classifiers

 x_2

 $\tilde{}$

W. X WO SO

- $\mathcal{H} = \{f_w = x \to w, x + w_0 : w \in \mathbb{R}^d, w_0 \in \mathbb{R}^d\}$
- $\hat{y}(x) = sign(\hat{w}.x + \hat{w}_0)$
- \hat{w} . $x + \hat{w}_0 = 0$ (linear) decision boundary or separating *hyperplane*
	- \circ that separates \mathbb{R}^d into two *halfspaces (regions)* $\widehat{\mathbf{w}}$. $x + \widehat{w}_0 > 0$ and $\widehat{\mathbf{w}}$. $x + \widehat{w}_0 < 0$
- more generally, $\hat{y}(x) = \text{sign}(\hat{f}(x))$
	- \rightarrow decision boundary is $\hat{f}(x) = 0$

 $\overline{x_1}$

W. x x u_0 \Rightarrow 0

Linear classifier

• Label-values do not have meaning

 \circ $y = {span, nospam}$ or $y = {0,1}$ or $y = {-1,1}$

• Ordering of labels does not matter (for most parts)

 σ $f(x) =$ "0" when $y =$ "1" is as bad as $f(x) =$ "9" when $y =$ "1"

- Often $f(x)$ does not return labels y
	- \circ e.g. in binary classification with $\mathcal{Y} = \{-1,1\}$ we often estimate $f: \mathcal{X} \to \mathbb{R}$ and then post process to get $\hat{y}(f(x)) = \mathbf{1}[f(x) \geq 0]$
	- \circ mainly for computational reasons
		- remember, we need to solve $\min_{f \in \mathcal{H}} \sum_i \ell(f\big(x^{(i)}\big), y^{(i)})$
		- **E** discrete values \rightarrow combinatorial problems \rightarrow hard to solve
	- \circ more generally $\mathcal{H} \subset \{f: \mathcal{X} \to \mathbb{R}\}$ and loss $\ell: \mathbb{R} \times \mathcal{Y} \to \mathbb{R}$
		- compare to regression, where typically $\mathcal{H} \subset \{f : \mathcal{X} \to \mathcal{Y}\}\$ and $\text{loss } \ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Classification vs Regression

• Label-values do not have meaning

■ discrete values \rightarrow combinatorial problems \rightarrow hard to solve

 \circ more generally $\mathcal{H} \subset \{f: \mathcal{X} \to \mathbb{R}\}$ and loss $\ell: \mathbb{R} \times \mathcal{Y} \to \mathbb{R}$

■ compare to regression, where typically $\mathcal{H} \subset \{f: \mathcal{X} \to \mathcal{Y}\}\$ and $\text{loss } \ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

- Binary classification $\mathcal{Y} = \{-1,1\}$ and $\mathcal{X} \in \mathbb{R}^d$
- Treat it as regression with squared loss, say linear regression
	- \circ Training data $S = \{(\boldsymbol{x}^{(i)}, y^{(i)}); i = 1,2,...,N\}$ o ERM

$$
\widehat{\mathbf{w}}, \widehat{w}_0 = \underset{w,w_0}{\operatorname{argmin}} \sum_i (\mathbf{w}. \mathbf{x}^{(i)} + w_0 - y^{(i)})^2
$$

Example credit: Greg Shaknarovich

Example credit: Greg Shaknarovich 32

Example credit: Greg Shaknarovich 33

Surrogate Losses

• The correct loss to use is 0-1 loss **after** thresholding $\ell^{01}(f(x), y) = \mathbf{1}[\text{sign}(f(x)) \neq y]$ $= 1$ [sign($f(x)y$) < 0]

Surrogate Losses

- The correct loss to use is 0-1 loss *after* thresholding $\ell^{01}(f(x), y) = \mathbf{1}[\text{sign}(f(x)) \neq y]$ $= 1$ [sign($f(x)y$) < 0]
- Linear regression uses $\ell^{LS}(f(x), y) = (f(x) y)^2$

- Why not do ERM over $\ell^{01}(f(x), y)$ directly?
	- \circ non-continuous, non-convex

Surrogate Losses

- Hard to optimize over ℓ^{01} , find another loss $\ell(\hat{y}, y)$ \circ Convex (for any fixed y) \rightarrow easier to minimize α An upper bound of $\ell^{01} \rightarrow$ small $\ell \Rightarrow$ small ℓ^{01}
- Satisfied by squared loss

 \rightarrow but has "large" loss even when $\ell^{01}(\hat{y}, y) = 0$

• Two more surrogate losses in in this course

0 $f(x)y \rightarrow$

Logistic Regression

Logistic regression: ERM on surrogate loss

•
$$
S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}, \mathcal{X} = \mathbb{R}^d, y = \{-1, 1\}
$$

- Linear model $f(x) = f_w(x) = w \cdot x + w_0$
- Minimize training loss

$$
\widehat{\boldsymbol{w}}, \widehat{w}_0 = \underset{\boldsymbol{w}, w_0}{\operatorname{argmin}} \sum_i \log \left(1 + \exp\left(-\left(\boldsymbol{w}, \boldsymbol{x}^{(i)} + w_0\right) y^{(i)} \right) \right)
$$

• Output classifier $\hat{y}(x) = \text{sign}(w, x + w_0)$

Logistic regression

$$
\widehat{\mathbf{w}}, \widehat{w}_0 = \underset{\mathbf{w}, w_0}{\text{argmin}} \sum_i \log \left(1 + \exp\left(-\left(\mathbf{w} . \, \mathbf{x}^{(i)} + w_0 \right) y^{(i)} \right) \right)
$$

- Learns a linear decision boundary
	- $\sigma \{x : w \cdot x + w_0 = 0\}$ is a hyperplane in \mathbb{R}^d decision boundary
	- $\sigma \in \{x : w, x + w_0 = 0\}$ divides \mathbb{R}^d into two halfspace (regions)

 x'

=

 $w \cdot x + v$

 \boldsymbol{W}

 χ

⊵ ji

- δ : $\{x: w, x + w_0 \geq 0\}$ will get label +1 and
	- ${x: w.x + w_0 < 0}$ will get label -1

 \mathcal{X}_1

 $\boldsymbol{\dot{\chi}}$

 $\boldsymbol{\mathcal{X}}^{\boldsymbol{\prime}}$

 \mathbf{w}

Logistic Regression

$$
\widehat{\mathbf{w}}, \widehat{w}_0 = \underset{\mathbf{w}, w_0}{\operatorname{argmin}} \sum_i \log \bigl(1 + \exp(-(\mathbf{w}. \, \mathbf{x} + w_0) \mathbf{y}) \bigr)
$$

- Convex optimization problem
- Can solve using gradient descent
- Can also add usual regularization: ℓ_2 , ℓ_1
	- \circ More details in the next session