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Recall: Linear Regression

I Given S =
{

(x(i), y(i))
}n
i=1

, find model parameter w ∈ Rd
that minimizes the sum of squared errors:

JLS
S (w) :=

n∑
i=1

(
y(i) −w · x(i)

)2
I We will discuss three topics through linear regression.

1. Regularization to prevent overfitting
2. Maximum likelihood estimation (MLE) interpretation
3. Gradient descent to estimate model parameter

I Far-reaching implications beyond linear regression
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Overview

Regularization

A Probabilistic Interpretation of Linear Regression

Optimization by Local Search
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Motivation

I The least squares solution is the best linear regressor on
training data S (solved in closed-form):

wLS
S := arg min

w∈Rd

JLS
S (w)

I But we care nothing about how well we do on S! Rather,
what we really care about is:

Can wLS
S handle a new x not already seen in S?

I This is the heart of machine learning: thoery/applications of
generalization.
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A Model of Noisy Environment

I There is some “true” parameter w∗ ∈ Rd.

I There is some input distribution x ∼ D and some noise
distribution ε ∼ E . Assume that E [ε] = 0 and Var (ε) = σ2.

I Each sample (x, y) ∈ Rd × R is generated by drawing x ∼ D
and ε ∼ E and setting

y = w∗ · x+ ε

(Thus the training data S is a random variable.)

I Check that wLS
S is consistent/unbiased:

ES [wLS
S ] = ES

[
X+

S (XSw
∗ + ε)

]
= w∗
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Measuring the Future Performance

I We want wLS
S which is trained on S to incur small loss in

expectation (“true/population error”):

ES,x,ε
[(

(w∗ · x+ ε)−wLS
S · x

)2]

I By the bias-variance decomposition of squared error, this is
(omitting the expectation over x):(

w∗ · x− ES [wLS
S ] · x

)2︸ ︷︷ ︸
0 in this case

+VarS
(
wLS
S · x

)
+ σ2︸︷︷︸

can’t help

I The variance term can be large if parameter values are large.

I
(
wLS

S · x
)2

more sensitive to a perturbation of S
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Ridge Regression

I “Shrink” the size of the estimator by penalizing its l2 norm:

wLSR
S,λ := arg min

w∈Rd

JLS
S (w) + λ ||w||22

I Closed-form solution given by (hence the name)

wLSR
S,λ = (X>SXS + λId×d)

−1X>S y

I No longer unbiased: ES [wLSR
S,λ ] 6= w∗ for λ > 0.

I But the true error might be smaller!(
w∗ · x− ES [wLSR

S,λ ] · x
)2︸ ︷︷ ︸

no longer 0

+ VarS
(
wLSR
S,λ · x

)︸ ︷︷ ︸
smaller

+ σ2︸︷︷︸
can’t help
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Lasso Regression

I Another idea: penalize the l1 norm:

wLSL
S,λ := arg min

w∈Rd

JLS
S (w) + λ ||w||1

I Still convex though not differentiable. Can be solved by
existing convex optimization methods or subgradient descent.

I Solutions with zero entries are encouraged (hence the name).

(squared l2 norm penalty vs l1 norm penalty)
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Summary on Regularization

I The l2/l1 regularized solutions can be framed as constrained
solutions: for some α, β ∈ R

wLSL
S,λ := arg min

w∈Rd: ||w||2≤α
JLS
S (w)

wLSR
S,λ := arg min

w∈Rd: ||w||1≤β
JLS
S (w)

I This is all to optimize the expected future performance.

I If we have infinite data, we don’t need to worry about
regularization.
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General Definition of Overfitting
I Population: Input-output pairs (x, y) are distributed as D.

I Loss function: A loss function l(y, y′) ∈ R specifies the
penalty on predicting y′ when the correct answer is y.

I Hypothesis class: A class of functions H is chosen to model
the input-output relationship (e.g., all hyperplanes).

I Training data: A fixed set of samples S is used to obtain
your hypothesis

hS = arg min
h∈H

ÊS [l(y, hS(x))] = arg min
h∈H

1

|S|
∑

(x,y)∈S

l(y, h(x))

I We say hS overfits S if there is h ∈ H such that

ÊS [l(y, hS(x))] < ÊS [l(y, h(x))]

E [l(y, hS(x))] > E [l(y, h(x))]
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E [l(y, hS(x))] > E [l(y, h(x))]

10 / 21



General Definition of Overfitting
I Population: Input-output pairs (x, y) are distributed as D.

I Loss function: A loss function l(y, y′) ∈ R specifies the
penalty on predicting y′ when the correct answer is y.

I Hypothesis class: A class of functions H is chosen to model
the input-output relationship (e.g., all hyperplanes).

I Training data: A fixed set of samples S is used to obtain
your hypothesis

hS = arg min
h∈H
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Linear Regression as MLE

I Claim. If S =
{

(x(i), y(i))
}n
i=1

is generated by a particular
probabilistic model, then the least squares solution is also the
maximum likelihood solution under this model:

wLS
S = arg max

w∈Rd

Pr (S|w)

I Provides an alternative characterization of the method.

I This is a recurring theme: different approaches “converge” to
the same thing.
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The Probabilistic Model

I There is some input distribution x ∼ D (as before).

I The noise ε ∼ N (0, σ2) is (centered) Gaussian.

I For any w ∈ Rd, the output value is set to y = w · x+ ε.

I Thus

Pr(x, y|w) = Pr(x) Pr(y|w,x)

= D(x)

(
1√

2πσ2
exp

(
−(y −w · x)2

2σ2

))
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MLE Coincides with Least Squares

Assuming each sample in S =
{

(x(i), y(i))
}n
i=1

is drawn iid,

wMLE
S := arg max

w∈Rd

n∑
i=1

log Pr
(
x(i), y(i)|w

)

= arg min
w∈Rd

n∑
i=1

(
y(i) −w · x(i)

)2

= wLS
S
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Need for a Universal Optimization Technique

I In the case of linear regression, the optimal model on a
training dataset is given in closed-form by wLS

S = X+y.

I This almost never happens with a real world objective.

We need a general, efficient optimization te-
chinique that can be used for a wide class of
models and objectives!
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Local Search

Input: training objective∗ J(θ) ∈ R, number of iterations T
Output: parameter θ̂ ∈ Rd such that J(θ̂) is small

1. Initialize θ0 (e.g., randomly).

2. For t = 0 . . . T − 1,

2.1 Obtain ∆t ∈ Rn such that J(θt + ∆t) ≤ J(θt).
2.2 Choose some “step size” ηt ∈ R.
2.3 Set θt+1 = θt + ηt∆t.

3. Return θT .

What is a good ∆t?

∗Assumed to be differentiable in this lecture.
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Gradient of the Objective at the Current Parameter
At θt ∈ Rn, the rate of increase (of the value of J) along a
direction u ∈ Rn (i.e., ||u||2 = 1) is given by the directional
derivative

∇uJ(θt) := lim
ε→0

J(θt + εu)− J(θt)

ε

The gradient of J at θt is defined to be a vector ∇J(θt) such that

∇uJ(θt) = ∇J(θt) · u ∀u ∈ Rn

Therefore, the direction of the greatest rate of decrease is given by
−∇J(θt)/

∣∣∣∣∇J(θt)
∣∣∣∣
2
.
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Gradient Descent

Input: training objective J(θ) ∈ R, number of iterations T
Output: parameter θ̂ ∈ Rn such that J(θ̂) is small

1. Initialize θ0 (e.g., randomly).

2. For t = 0 . . . T − 1,

θt+1 = θt − ηt∇J(θt)

3. Return θT .

When J(θ) is additionally convex (as in linear regression), gradient
descent converges to an optimal solution (for appropriate step
sizes).
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Gradient Descent for Linear Regression

Input: training objective

JLS
S (w) :=

1

2

n∑
i=1

(
y(i) −w · x(i)

)2
number of iterations T
Output: parameter ŵ ∈ Rn such that JLS

S (ŵ) ≈ JLS
S (wLS

S )

1. Initialize w0 (e.g., randomly).

2. For t = 0 . . . T − 1,

wt+1 = wt − ηt
n∑
i=1

x(i) ·
(
y(i) −wt · x(i)

)
3. Return wT .
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Summary

I Regularization is an effort to prevent overfitting and
optimize the true/population error.

I We can endow an alternative probabilistic interpretation of
linear regression as MLE.

I Gradient descent is a local search algorithm that can be
used to optimize any differentiable objective function.

I A variant called “stochastic” gradient descent is the
cornerstone of modern large-scale machine learning.
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