On Linear Regression: Regularization, Probabilistic Interpretation, and Gradient Descent

Karl Stratos

June 19, 2018

Recall: Linear Regression

• Given $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$, find model parameter $w \in \mathbb{R}^d$ that minimizes the sum of squared errors:

$$J_{\boldsymbol{S}}^{\mathrm{LS}}(\boldsymbol{w}) := \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \right)^2$$

▶ We will discuss three topics through linear regression.

- 1. **Regularization** to prevent overfitting
- 2. Maximum likelihood estimation (MLE) interpretation
- 3. Gradient descent to estimate model parameter
- Far-reaching implications beyond linear regression

Overview

Regularization

A Probabilistic Interpretation of Linear Regression Optimization by Local Search

Motivation

The least squares solution is the *best* linear regressor on training data S (solved in closed-form):

$$oldsymbol{w}_S^{ ext{LS}} := rgmin_{oldsymbol{w}\in\mathbb{R}^d} J_S^{ ext{LS}}(oldsymbol{w})$$

Motivation

The least squares solution is the best linear regressor on training data S (solved in closed-form):

$$oldsymbol{w}^{ ext{LS}}_S := rgmin_{oldsymbol{w}\in\mathbb{R}^d} J^{ ext{LS}}_S(oldsymbol{w})$$

But we care nothing about how well we do on S! Rather, what we really care about is:

Can w_S^{LS} handle a new x not already seen in S?

Motivation

The least squares solution is the best linear regressor on training data S (solved in closed-form):

$$oldsymbol{w}^{ ext{LS}}_S := rgmin_{oldsymbol{w} \in \mathbb{R}^d} J^{ ext{LS}}_S(oldsymbol{w})$$

But we care nothing about how well we do on S! Rather, what we really care about is:

Can w_S^{LS} handle a new x not already seen in S?

 This is the heart of machine learning: thoery/applications of generalization.

• There is some "true" parameter $w^* \in \mathbb{R}^d$.

- There is some "true" parameter $w^* \in \mathbb{R}^d$.
- There is some input distribution x ~ D and some noise distribution ε ~ E. Assume that E [ε] = 0 and Var (ε) = σ².

- There is some "true" parameter $w^* \in \mathbb{R}^d$.
- There is some input distribution x ~ D and some noise distribution ε ~ E. Assume that E [ε] = 0 and Var (ε) = σ².
- Each sample $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ is generated by drawing $x \sim D$ and $\epsilon \sim \mathcal{E}$ and setting

$$y = \boldsymbol{w}^* \cdot \boldsymbol{x} + \boldsymbol{\epsilon}$$

(Thus the training data S is a random variable.)

- There is some "true" parameter $w^* \in \mathbb{R}^d$.
- There is some input distribution x ~ D and some noise distribution ε ~ E. Assume that E [ε] = 0 and Var (ε) = σ².
- Each sample $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ is generated by drawing $x \sim D$ and $\epsilon \sim \mathcal{E}$ and setting

$$y = w^* \cdot x + \epsilon$$

(Thus the training data S is a random variable.)

• Check that w_S^{LS} is consistent/unbiased:

$$\mathsf{E}_{S}[\boldsymbol{w}_{S}^{\mathrm{LS}}] = \mathsf{E}_{S}\left[\boldsymbol{X}_{S}^{+}\left(\boldsymbol{X}_{S}\boldsymbol{w}^{*} + \boldsymbol{\epsilon}\right)\right] = \boldsymbol{w}^{*}$$

Measuring the Future Performance

We want w^{LS}_S which is <u>trained on S</u> to incur small loss in expectation ("true/population error"):

$$\mathsf{E}_{S, \boldsymbol{x}, \epsilon} \left[\left((\boldsymbol{w}^* \cdot \boldsymbol{x} + \epsilon) - \boldsymbol{w}_{S}^{\mathrm{LS}} \cdot \boldsymbol{x}
ight)^2
ight]$$

Measuring the Future Performance

We want w^{LS}_S which is <u>trained on S</u> to incur small loss in expectation ("true/population error"):

$$\mathsf{E}_{\boldsymbol{S},\boldsymbol{x},\boldsymbol{\epsilon}}\left[\left((\boldsymbol{w}^{*}\cdot\boldsymbol{x}+\boldsymbol{\epsilon})-\boldsymbol{w}_{\boldsymbol{S}}^{\mathrm{LS}}\cdot\boldsymbol{x}\right)^{2}\right]$$

By the bias-variance decomposition of squared error, this is (omitting the expectation over x):

$$\underbrace{ \left(\boldsymbol{w}^{*} \cdot \boldsymbol{x} - \boldsymbol{\mathsf{E}}_{S}[\boldsymbol{w}^{\mathrm{LS}}_{S}] \cdot \boldsymbol{x} \right)^{2}}_{\mathsf{0} \text{ in this case}} + \mathsf{Var}_{S} \left(\boldsymbol{w}^{\mathrm{LS}}_{S} \cdot \boldsymbol{x} \right) + \underbrace{\sigma^{2}}_{\mathsf{can't help}}$$

Measuring the Future Performance

We want w^{LS}_S which is <u>trained on S</u> to incur small loss in expectation ("true/population error"):

$$\mathsf{E}_{\boldsymbol{S},\boldsymbol{x},\boldsymbol{\epsilon}}\left[\left((\boldsymbol{w}^{*}\cdot\boldsymbol{x}+\boldsymbol{\epsilon})-\boldsymbol{w}_{\boldsymbol{S}}^{\mathrm{LS}}\cdot\boldsymbol{x}\right)^{2}\right]$$

By the bias-variance decomposition of squared error, this is (omitting the expectation over x):

$$\underbrace{ (\boldsymbol{w}^{*} \cdot \boldsymbol{x} - \boldsymbol{\mathsf{E}}_{S}[\boldsymbol{w}^{\mathrm{LS}}_{S}] \cdot \boldsymbol{x})^{2}}_{\mathsf{0} \text{ in this case}} + \mathsf{Var}_{S}\left(\boldsymbol{w}^{\mathrm{LS}}_{S} \cdot \boldsymbol{x}\right) + \underbrace{\sigma^{2}}_{\mathsf{can't help}}$$

• The variance term can be large if parameter values are large. • $(w_S^{\text{LS}} \cdot x)^2$ more sensitive to a perturbation of S

• "Shrink" the size of the estimator by penalizing its l_2 norm:

$$oldsymbol{w}_{S,\lambda}^{ ext{LSR}} := rgmin_{oldsymbol{w}\in\mathbb{R}^d} J_S^{ ext{LSR}}(oldsymbol{w}) + \lambda \, ||oldsymbol{w}||_2^2$$

• "Shrink" the size of the estimator by penalizing its l_2 norm:

$$oldsymbol{w}_{S,\lambda}^{ ext{LSR}} \coloneqq rgmin_{oldsymbol{w}\in\mathbb{R}^d} J_S^{ ext{LSR}}(oldsymbol{w}) + \lambda \, ||oldsymbol{w}||_2^2$$

Closed-form solution given by (hence the name)

$$\boldsymbol{w}_{\boldsymbol{S},\lambda}^{\mathrm{LSR}} = (\boldsymbol{X}_{\boldsymbol{S}}^{\top} \boldsymbol{X}_{\boldsymbol{S}} + \lambda I_{d \times d})^{-1} \boldsymbol{X}_{\boldsymbol{S}}^{\top} \boldsymbol{y}$$

"Shrink" the size of the estimator by penalizing its l₂ norm:

$$oldsymbol{w}_{S,\lambda}^{ ext{LSR}} \coloneqq rgmin_{oldsymbol{w}\in\mathbb{R}^d} J_S^{ ext{LSR}}(oldsymbol{w}) + \lambda \, ||oldsymbol{w}||_2^2$$

Closed-form solution given by (hence the name)

$$\boldsymbol{w}^{\mathrm{LSR}}_{S,\lambda} = (\boldsymbol{X}_S^\top \boldsymbol{X}_S + \lambda I_{d\times d})^{-1} \boldsymbol{X}_S^\top \boldsymbol{y}$$

• No longer unbiased: $\mathbf{E}_{S}[\mathbf{w}_{S,\lambda}^{\text{LSR}}] \neq \mathbf{w}^{*}$ for $\lambda > 0$.

"Shrink" the size of the estimator by penalizing its l₂ norm:

$$oldsymbol{w}_{S,\lambda}^{ ext{LSR}} \coloneqq rgmin_{oldsymbol{w}\in\mathbb{R}^d} J_S^{ ext{LSR}}(oldsymbol{w}) + \lambda \, ||oldsymbol{w}||_2^2$$

► Closed-form solution given by (hence the name) $\boldsymbol{w}_{S,\lambda}^{\text{LSR}} = (\boldsymbol{X}_{S}^{\top}\boldsymbol{X}_{S} + \lambda I_{d\times d})^{-1}\boldsymbol{X}_{S}^{\top}\boldsymbol{y}$

• No longer unbiased:
$$\mathbf{E}_{S}[\boldsymbol{w}_{S\lambda}^{\text{LSR}}] \neq \boldsymbol{w}^{*}$$
 for $\lambda > 0$.

But the true error might be smaller!

$$\underbrace{\left(\underbrace{\boldsymbol{w}^{*} \cdot \boldsymbol{x} - \boldsymbol{\mathsf{E}}_{S}[\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}}] \cdot \boldsymbol{x} \right)^{2}}_{\text{no longer 0}} + \underbrace{\operatorname{Var}_{S}\left(\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\operatorname{Var}_{S}^{2}\left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{\nabla}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{\nabla}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\boldsymbol{\nabla}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{can't help}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{2} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \left(\underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \cdot \boldsymbol{x} \right)}_{\text{smaller}} + \underbrace{\boldsymbol{w}_{S,\lambda}^{\mathrm{LSR}} \right)}_{\text{s$$

Lasso Regression

• Another idea: penalize the l_1 norm:

$$oldsymbol{w}_{S,\lambda}^{ ext{LSL}} := rgmin_{oldsymbol{w} \in \mathbb{R}^d} J_S^{ ext{LSL}}(oldsymbol{w}) + \lambda \, ||oldsymbol{w}||_1$$

Lasso Regression

• Another idea: penalize the l_1 norm:

$$oldsymbol{w}_{S,\lambda}^{ ext{LSL}} := rgmin_{oldsymbol{w}\in\mathbb{R}^d} J_S^{ ext{LSL}}(oldsymbol{w}) + \lambda \, ||oldsymbol{w}||_1$$

Still convex though not differentiable. Can be solved by existing convex optimization methods or subgradient descent.

Lasso Regression

Another idea: penalize the l₁ norm:

$$\boldsymbol{w}^{\mathrm{LSL}}_{\boldsymbol{S},\boldsymbol{\lambda}} := \mathop{\mathrm{arg\,min}}_{\boldsymbol{w} \in \mathbb{R}^d} J^{\mathrm{LS}}_{\boldsymbol{S}}(\boldsymbol{w}) + \boldsymbol{\lambda} \, ||\boldsymbol{w}||_1$$

- Still convex though not differentiable. Can be solved by existing convex optimization methods or subgradient descent.
- Solutions with zero entries are encouraged (hence the name).

(squared l_2 norm penalty vs l_1 norm penalty)

Summary on Regularization

The l₂/l₁ regularized solutions can be framed as constrained solutions: for some α, β ∈ ℝ

$$egin{aligned} oldsymbol{w}_{S,\lambda}^{ ext{LSL}} &:= rgmin_{oldsymbol{w}\in\mathbb{R}^d:\,||oldsymbol{w}||_2\leqlpha} J_S^{ ext{LS}}(oldsymbol{w}) \ oldsymbol{w}_{S,\lambda}^{ ext{LSR}} &:= rgmin_{oldsymbol{w}\in\mathbb{R}^d:\,||oldsymbol{w}||_2\leqeta} J_S^{ ext{LS}}(oldsymbol{w}) \end{aligned}$$

- ► This is all to optimize the *expected future performance*.
- If we have infinite data, we don't need to worry about regularization.

- **Population**: Input-output pairs (x, y) are distributed as \mathcal{D} .
- ▶ Loss function: A loss function $l(y, y') \in \mathbb{R}$ specifies the penalty on predicting y' when the correct answer is y.

- **Population**: Input-output pairs (x, y) are distributed as \mathcal{D} .
- ▶ Loss function: A loss function $l(y, y') \in \mathbb{R}$ specifies the penalty on predicting y' when the correct answer is y.
- ► **Hypothesis class**: A class of functions \mathcal{H} is chosen to model the input-output relationship (e.g., all hyperplanes).

- **Population**: Input-output pairs (x, y) are distributed as \mathcal{D} .
- ► Loss function: A loss function l(y, y') ∈ ℝ specifies the penalty on predicting y' when the correct answer is y.
- ► **Hypothesis class**: A class of functions *H* is chosen to model the input-output relationship (e.g., all hyperplanes).
- Training data: A fixed set of samples S is used to obtain your hypothesis

$$h_{\mathbf{S}} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \widehat{\mathbf{E}}_{S} \left[l(y, h_{\mathbf{S}}(x)) \right] = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{|\mathbf{S}|} \sum_{(x,y) \in \mathbf{S}} l(y, h(x))$$

- **Population**: Input-output pairs (x, y) are distributed as \mathcal{D} .
- ► Loss function: A loss function l(y, y') ∈ ℝ specifies the penalty on predicting y' when the correct answer is y.
- ▶ **Hypothesis class**: A class of functions *H* is chosen to model the input-output relationship (e.g., all hyperplanes).
- Training data: A fixed set of samples S is used to obtain your hypothesis

$$h_{S} = \underset{h \in \mathcal{H}}{\arg\min} \, \widehat{\mathsf{E}}_{S} \left[l(y, h_{S}(x)) \right] = \underset{h \in \mathcal{H}}{\arg\min} \, \frac{1}{|S|} \sum_{(x,y) \in S} l(y, h(x))$$

▶ We say h_S overfits S if there is $h \in \mathcal{H}$ such that $\widehat{\mathsf{E}}_S[l(y, h_S(x))] < \widehat{\mathsf{E}}_S[l(y, h(x))]$ $\mathsf{E}[l(y, h_S(x))] > \mathsf{E}[l(y, h(x))]$

Overview

Regularization A Probabilistic Interpretation of Linear Regression Optimization by Local Search

Linear Regression as MLE

► Claim. If S = {(x⁽ⁱ⁾, y⁽ⁱ⁾)}ⁿ_{i=1} is generated by a particular probabilistic model, then the least squares solution is also the maximum likelihood solution under this model:

$$oldsymbol{w}_{S}^{ ext{LS}} = rg\max_{oldsymbol{w} \in \mathbb{R}^{d}} \Pr\left(S | oldsymbol{w}
ight)$$

Linear Regression as MLE

► Claim. If S = {(x⁽ⁱ⁾, y⁽ⁱ⁾)}ⁿ_{i=1} is generated by a particular probabilistic model, then the least squares solution is also the maximum likelihood solution under this model:

$$oldsymbol{w}_{S}^{\mathrm{LS}} = rg\max_{oldsymbol{w} \in \mathbb{R}^{d}} \Pr\left(S | oldsymbol{w}
ight)$$

Provides an alternative characterization of the method.

 This is a recurring theme: different approaches "converge" to the same thing.

The Probabilistic Model

- There is some input distribution $x \sim \mathcal{D}$ (as before).
- The noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is (centered) Gaussian.
- For any $\boldsymbol{w} \in \mathbb{R}^d$, the output value is set to $y = \boldsymbol{w} \cdot \boldsymbol{x} + \epsilon$.

The Probabilistic Model

- There is some input distribution $\boldsymbol{x} \sim \mathcal{D}$ (as before).
- The noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is (centered) Gaussian.
- For any $\boldsymbol{w} \in \mathbb{R}^d$, the output value is set to $y = \boldsymbol{w} \cdot \boldsymbol{x} + \epsilon$.

Thus

$$\Pr(\boldsymbol{x}, y | \boldsymbol{w}) = \Pr(\boldsymbol{x}) \Pr(y | \boldsymbol{w}, \boldsymbol{x})$$
$$= \mathcal{D}(\boldsymbol{x}) \left(\frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(\frac{-(y - \boldsymbol{w} \cdot \boldsymbol{x})^2}{2\sigma^2}\right) \right)$$

MLE Coincides with Least Squares

Assuming each sample in $S = \left\{({\pmb{x}}^{(i)}, y^{(i)})\right\}_{i=1}^n$ is drawn iid,

$$oldsymbol{w}_S^{ ext{MLE}} := rgmax_{oldsymbol{w}\in\mathbb{R}^d} \sum_{i=1}^n \log \Pr\left(oldsymbol{x}^{(i)}, y^{(i)} | oldsymbol{w}
ight)$$

MLE Coincides with Least Squares

Assuming each sample in $S = \left\{({\pmb{x}}^{(i)}, y^{(i)})\right\}_{i=1}^n$ is drawn iid,

$$egin{aligned} oldsymbol{w}_{S}^{ ext{MLE}} &:= rg\max_{oldsymbol{w} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \log \Pr\left(oldsymbol{x}^{(i)}, y^{(i)} | oldsymbol{w}
ight) \ &= rgmin_{oldsymbol{w} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \left(y^{(i)} - oldsymbol{w} \cdot oldsymbol{x}^{(i)}
ight)^{2} \end{aligned}$$

MLE Coincides with Least Squares

Assuming each sample in $S = \left\{({\pmb{x}}^{(i)}, y^{(i)})\right\}_{i=1}^n$ is drawn iid,

$$egin{aligned} oldsymbol{w}_S^{ ext{MLE}} &:= rg\max_{oldsymbol{w} \in \mathbb{R}^d} \sum_{i=1}^n \log \Pr\left(oldsymbol{x}^{(i)}, y^{(i)} | oldsymbol{w}
ight) \ &= rgmin_{oldsymbol{w} \in \mathbb{R}^d} \sum_{i=1}^n \left(y^{(i)} - oldsymbol{w} \cdot oldsymbol{x}^{(i)}
ight)^2 = oldsymbol{w}_S^{ ext{LS}} \end{aligned}$$

Regularization A Probabilistic Interpretation of Linear Regression Optimization by Local Search Need for a Universal Optimization Technique

► In the case of linear regression, the optimal model on a training dataset is given in closed-form by w^{LS}_S = X⁺y.

Need for a Universal Optimization Technique

► In the case of linear regression, the optimal model on a training dataset is given in closed-form by w^{LS}_S = X⁺y.

► This almost never happens with a real world objective.

Need for a Universal Optimization Technique

► In the case of linear regression, the optimal model on a training dataset is given in closed-form by w^{LS}_S = X⁺y.

This almost never happens with a real world objective.

We need a **general**, **efficient** optimization techinique that can be used for a wide class of models and objectives!

Local Search

Input: training objective* $J(\theta) \in \mathbb{R}$, number of iterations T **Output**: parameter $\hat{\theta} \in \mathbb{R}^d$ such that $J(\hat{\theta})$ is small 1. Initialize θ^0 (e.g., randomly). 2. For $t = 0 \dots T - 1$, 2.1 Obtain $\Delta^t \in \mathbb{R}^n$ such that $J(\theta^t + \Delta^t) \leq J(\theta^t)$. 2.2 Choose some "step size" $\eta^t \in \mathbb{R}$. 2.3 Set $\theta^{t+1} = \theta^t + \eta^t \Delta^t$. 3. Return θ^T .

^{*}Assumed to be differentiable in this lecture.

Local Search

Input: training objective* J(θ) ∈ ℝ, number of iterations T
Output: parameter θ̂ ∈ ℝ^d such that J(θ̂) is small
1. Initialize θ⁰ (e.g., randomly).
2. For t = 0...T - 1,
2.1 Obtain Δ^t ∈ ℝⁿ such that J(θ^t + Δ^t) ≤ J(θ^t).
2.2 Choose some "step size" η^t ∈ ℝ.
2.3 Set θ^{t+1} = θ^t + η^tΔ^t.
3. Return θ^T.

What is a good Δ^t ?

^{*}Assumed to be differentiable in this lecture.

Gradient of the Objective at the Current Parameter

At $\theta^t \in \mathbb{R}^n$, the rate of increase (of the value of J) along a direction $u \in \mathbb{R}^n$ (i.e., $||u||_2 = 1$) is given by the **directional derivative**

$$abla_u J(\theta^t) := \lim_{\epsilon \to 0} \frac{J(\theta^t + \epsilon u) - J(\theta^t)}{\epsilon}$$

Gradient of the Objective at the Current Parameter

At $\theta^t \in \mathbb{R}^n$, the rate of increase (of the value of J) along a direction $u \in \mathbb{R}^n$ (i.e., $||u||_2 = 1$) is given by the **directional derivative**

$$abla_u J(\theta^t) := \lim_{\epsilon \to 0} \frac{J(\theta^t + \epsilon u) - J(\theta^t)}{\epsilon}$$

The gradient of J at θ^t is defined to be a vector $\nabla J(\theta^t)$ such that

$$\nabla_u J(\theta^t) = \nabla J(\theta^t) \cdot u \qquad \forall u \in \mathbb{R}^n$$

Gradient of the Objective at the Current Parameter

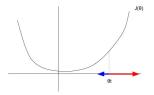
At $\theta^t \in \mathbb{R}^n$, the rate of increase (of the value of J) along a direction $u \in \mathbb{R}^n$ (i.e., $||u||_2 = 1$) is given by the **directional derivative**

$$abla_u J(\theta^t) := \lim_{\epsilon \to 0} \frac{J(\theta^t + \epsilon u) - J(\theta^t)}{\epsilon}$$

The gradient of J at θ^t is defined to be a vector $\nabla J(\theta^t)$ such that

$$\nabla_u J(\theta^t) = \nabla J(\theta^t) \cdot u \qquad \forall u \in \mathbb{R}^n$$

Therefore, the direction of the greatest rate of *decrease* is given by $-\nabla J(\theta^t) / ||\nabla J(\theta^t)||_2$.



Gradient Descent

Input: training objective $J(\theta) \in \mathbb{R}$, number of iterations T**Output**: parameter $\hat{\theta} \in \mathbb{R}^n$ such that $J(\hat{\theta})$ is small

1. Initialize
$$\theta^0$$
 (e.g., randomly).

2. For
$$t = 0 \dots T - 1$$
,

$$\theta^{t+1} = \theta^t - \eta^t \nabla J(\theta^t)$$

3. Return θ^T .

Gradient Descent

Input: training objective $J(\theta) \in \mathbb{R}$, number of iterations T**Output**: parameter $\hat{\theta} \in \mathbb{R}^n$ such that $J(\hat{\theta})$ is small

1. Initialize
$$\theta^0$$
 (e.g., randomly).

2. For
$$t = 0 \dots T - 1$$
,

$$\theta^{t+1} = \theta^t - \eta^t \nabla J(\theta^t)$$

3. Return θ^T .

When $J(\theta)$ is additionally *convex* (as in linear regression), gradient descent converges to an optimal solution (for appropriate step sizes).

Gradient Descent for Linear Regression

Input: training objective

$$J_{S}^{\mathrm{LS}}(oldsymbol{w}) := rac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - oldsymbol{w} \cdot oldsymbol{x}^{(i)}
ight)^{2}$$

number of iterations T **Output**: parameter $\hat{w} \in \mathbb{R}^n$ such that $J_S^{\text{LS}}(\hat{w}) \approx J_S^{\text{LS}}(w_S^{\text{LS}})$ 1. Initialize w^0 (e.g., randomly). 2. For $t = 0 \dots T - 1$, $w^{t+1} = w^t - \eta^t \sum_{i=1}^n x^{(i)} \cdot \left(y^{(i)} - w^t \cdot x^{(i)}\right)$ 3. Return w^T .

20/21

Summary

- Regularization is an effort to prevent overfitting and optimize the true/population error.
- We can endow an alternative probabilistic interpretation of linear regression as MLE.
- Gradient descent is a local search algorithm that can be used to optimize any differentiable objective function.
 - A variant called "stochastic" gradient descent is the cornerstone of modern large-scale machine learning.