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Recall: Linear Regression

> Given S = {(m(i),y(i))}?zl, find model parameter w € R?

that minimizes the sum of squared errors:

Tw) = 37 (40— w-29)

=1

2

» We will discuss three topics through linear regression.

1. Regularization to prevent overfitting
2. Maximum likelihood estimation (MLE) interpretation
3. Gradient descent to estimate model parameter

» Far-reaching implications beyond linear regression
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Overview

Regularization
A Probabilistic Interpretation of Linear Regression
Optimization by Local Search
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Motivation

> The least squares solution is the best linear regressor on
training data S (solved in closed-form):

w5 = arg min J55 (w)

wcRd
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Motivation

> The least squares solution is the best linear regressor on
training data S (solved in closed-form):

w5 = arg min J55 (w)

wcRd

» But we care nothing about how well we do on S! Rather,
what we really care about is:

Can w%® handle a new x not already seen in S7?

» This is the heart of machine learning: thoery/applications of
generalization.
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A Model of Noisy Environment

» There is some “true’ parameter w* € R,
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» There is some input distribution & ~ D and some noise
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» Each sample (z,y) € R? x R is generated by drawing & ~ D
and € ~ £ and setting
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A Model of Noisy Environment

» There is some “true’ parameter w* € R,

» There is some input distribution & ~ D and some noise
distribution € ~ £. Assume that E [¢] = 0 and Var (¢) = o2

» Each sample (z,y) € R? x R is generated by drawing & ~ D
and € ~ £ and setting

y=w"-x+e

(Thus the training data S is a random variable.)

» Check that 'wIés is consistent/unbiased:
Es[wt®] = Eg [X§ (Xsw* +€)] = w*
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Measuring the Future Performance

» We want w5 which is trained on S to incur small loss in
expectation (“true/population error”):

o [l -]
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Measuring the Future Performance

» We want w5 which is trained on S to incur small loss in
expectation (“true/population error”):

Esme [((w* @+ €) —wg - mﬂ

> By the bias-variance decomposition of squared error, this is
(omitting the expectation over x):

(w" @ — Es[w®] - 2)” +Vars (w5 - 2) + o
0 in this case can't help
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Measuring the Future Performance

» We want w5 which is trained on S to incur small loss in
expectation (“true/population error”):

Esme [((w* @+ €) —wg - mﬂ

> By the bias-variance decomposition of squared error, this is
(omitting the expectation over x):

(w" @ — Es[w5] - :c)2 +Varg (ngs x) + \0,2_/
can't help

0 in this case

» The variance term can be large if parameter values are large.

2 .. .
> (w{;«S a:) more sensitive to a perturbation of S
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Ridge Regression
> “Shrink” the size of the estimator by penalizing its I norm:

wgi\R = arg min Jé’s(w) + A H'ng

weRd
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Ridge Regression
> “Shrink” the size of the estimator by penalizing its I norm:

w%?/\fi = arg min Jf;s(w) + A Hng

weRd

» Closed-form solution given by (hence the name)

WP = (XX g+ Myxa) ' X gy

> No longer unbiased: Eg[w%SR] # w* for A > 0.

» But the true error might be smaller!

(w" - — Eg[ngi\R] . x)i—&- Varg (w{;s/\R x) + o2
can't help

no longer 0 smaller
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Lasso Regression

» Another idea: penalize the I1 norm:

wgSAL = arg min JI§S(w) + A [lwlly

weRd
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Lasso Regression

» Another idea: penalize the I1 norm:

wSL = arg min J5S (w) + \ [Jw|,

weRd

» Still convex though not differentiable.
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Lasso Regression

» Another idea: penalize the I1 norm:

wSL = arg min J5S (w) + \ [Jw|,

weRd

» Still convex though not differentiable.

» Solutions with zero entries are encouraged (hence the name).

\ /

N\ / /
\

(squared I3 norm penalty vs [; norm penalty)
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Summary on Regularization

» The l3/l; regularized solutions can be framed as constrained
solutions: for some a, 5 € R

w{;% = argmin J5(w)
weR?: ||w]|,<a
w%%R = argmin J5(w)

weR: [Jw||; <A
» This is all to optimize the expected future performance.

» If we have infinite data, we don't need to worry about
regularization.
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General Definition of Overfitting
» Population: Input-output pairs (x,y) are distributed as D.

» Loss function: A loss function I(y,y’) € R specifies the
penalty on predicting 3y’ when the correct answer is .
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» Hypothesis class: A class of functions H is chosen to model
the input-output relationship (e.g., all hyperplanes).

» Training data: A fixed set of samples S is used to obtain
your hypothesis
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General Definition of Overfitting

>

>

Population: Input-output pairs (z,y) are distributed as D.

Loss function: A loss function I(y,y’) € R specifies the
penalty on predicting 3y’ when the correct answer is .

Hypothesis class: A class of functions H is chosen to model
the input-output relationship (e.g., all hyperplanes).

Training data: A fixed set of samples S is used to obtain
your hypothesis

hg = argmin Eg [l(y,hs(x))] = arg mm — Z Iy, h
heH heH (z,y)€S

We say hg overfits S if there is h € H such that

Es [I(y, hs(2))] < Es [I(y, h(2))]

E [I(y, hs())] > E[l(y, h())]
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Overview

Regularization
A Probabilistic Interpretation of Linear Regression
Optimization by Local Search

11/21



Linear Regression as MLE

» Claim. If § = {(m(i),y(i))}?zl is generated by a particular
probabilistic model, then the least squares solution is also the
maximum likelihood solution under this model:

wS = arg max Pr (S|w)

weR4
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Linear Regression as MLE

» Claim. If § = {(m(i),y(i))}?zl is generated by a particular
probabilistic model, then the least squares solution is also the
maximum likelihood solution under this model:

wS = arg max Pr (S|w)

weR4

» Provides an alternative characterization of the method.

» This is a recurring theme: different approaches “converge” to
the same thing.
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The Probabilistic Model

» There is some input distribution & ~ D (as before).
» The noise € ~ N(0,0?) is (centered) Gaussian.

» For any w € R?, the output value is set to y = w - x + €.
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The Probabilistic Model

v

There is some input distribution & ~ D (as before).

v

The noise € ~ N(0,0?) is (centered) Gaussian.

v

For any w € RY, the output value is set to y = w - = + €.

» Thus

Pr(z, y|lw) = Pr(z) Pr(y|lw, x)

N ),
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MLE Coincides with Least Squares

Assuming each sample in S = {(w(i),y(i))}?zl is drawn iid,

n
'wg/[LE 1= arg maxz log Pr (w(i),y(i)]w>

weRd i=1
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MLE Coincides with Least Squares

Assuming each sample in S = {(w(i),y(i))}?zl is drawn iid,

n
ngLE 1= arg maxz log Pr (m(i),y(i)]w>

weR? ;T4

= argminzn: (y(i) —w- :r(i)>

weR?

2
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MLE Coincides with Least Squares

Assuming each sample in S = {(w(i),y(i))}?zl is drawn iid,

n
ngLE 1= arg maxz log Pr (m(i),y(i)]w>
weR? ;T4
° : N 2
= argminz (y(l) —w- m(l)) _ wlgs

weRd i=1

14 /21



Overview

Regularization
A Probabilistic Interpretation of Linear Regression
Optimization by Local Search
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Need for a Universal Optimization Technique

> In the case of linear regression, the optimal model on a
training dataset is given in closed-form by w%® = X*y.
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Need for a Universal Optimization Technique

> In the case of linear regression, the optimal model on a
training dataset is given in closed-form by w%® = X*y.

» This almost never happens with a real world objective.

We need a general, efficient optimization te-
chinique that can be used for a wide class of
models and objectives!
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Local Search

Input: training objective® J(f) € R, number of iterations T
Output: parameter § € R such that J(6) is small
1. Initialize ° (e.g., randomly).
2. Fort=0...T -1,
2.1 Obtain A" € R™ such that J(6" + A") < J(6").

2.2 Choose some “step size” 7' € R.
2.3 Set 9!t =0t + ' AL

3. Return 671,

*Assumed to be differentiable in this lecture.

17 /21



Local Search

Input: training objective® J(f) € R, number of iterations T
Output: parameter § € R such that J(6) is small
1. Initialize ° (e.g., randomly).
2. Fort=0...T -1,
2.1 Obtain A" € R™ such that J(6" + A") < J(6").

2.2 Choose some “step size” 7' € R.
2.3 Set 9!t =0t + ' AL

3. Return 671,

What is a good A?

*Assumed to be differentiable in this lecture.
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Gradient of the Objective at the Current Parameter
At 0! € R", the rate of increase (of the value of .J) along a
direction u € R” (i.e., ||u||, = 1) is given by the directional
derivative

ST i timg O W) = (0

e—0 €
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Gradient of the Objective at the Current Parameter
At 0! € R", the rate of increase (of the value of .J) along a
direction u € R” (i.e., ||u||, = 1) is given by the directional
derivative

ST i timg O W) = (0

e—0 €

The gradient of J at 0 is defined to be a vector V.J(#") such that
VuJ(0Y) =VJ(0")  u Vu € R"

Therefore, the direction of the greatest rate of decrease is given by
V0% ||V.I6Y)]],.

J(®)

ot

18 /21



Gradient Descent

Input: training objective J(0) € R, number of iterations T'
Output: parameter § € R™ such that J(#) is small

1. Initialize 6° (e.g., randomly).
2 Fort=0...T—1,

0t = 0" — 'V (0"

3. Return 67
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Gradient Descent

Input: training objective J(0) € R, number of iterations T'
Output: parameter § € R™ such that J(#) is small

1. Initialize 6° (e.g., randomly).
2. Fort=0...T -1,

0t = 0" — 'V (0"

3. Return 67

When J(6) is additionally convex (as in linear regression), gradient
descent converges to an optimal solution (for appropriate step

sizes).
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Gradient Descent for Linear Regression

Input: training objective
JLS(’w) = lz <y(i) —w - :c(i))2
S 2 2

number of iterations T'

Output: parameter w € R" such that J55(w) ~ J55 (wk)
1. Initialize w® (e.g., randomly).
2. Fort=0...T -1,

witl = w! — ntim(i) . (y(i) _wt- m(i))
i=1

3. Return w?.
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Summary

» Regularization is an effort to prevent overfitting and
optimize the true/population error.

» We can endow an alternative probabilistic interpretation of
linear regression as MLE.

» Gradient descent is a local search algorithm that can be
used to optimize any differentiable objective function.

» A variant called “stochastic” gradient descent is the
cornerstone of modern large-scale machine learning.
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