Day 2: Overfitting, regularization

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

19 June 2018

Review

Yesterday

- Supervised learning
- Linear regression polynomial curve fitting
- Empirical risk minimization, evaluation
- Today
 - Overfitting
 - Model selection
 - Regularization
 - Gradient descent
- Schedule:

9:00am-10:25am 10:35am-noon noon-1:00pm 1:00pm-3:30pm 3:30pm-5:00pm Lecture 2.a: Overfitting, model selection Lecture 2.b: Regularization, gradient descent Lunch Programming Invited Talk - Mathew Walter

Overfitting

Dataset size and linear regression

- Recall linear regression
 - Input $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$, training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$
 - Estimate $w \in \mathbb{R}^d$ and bias $w_0 \in \mathbb{R}$ by minimizing training loss

$$\widehat{w}, \widehat{w}_0 = \operatorname*{argmin}_{w,w_0} \sum_{i=1}^{N} (w. x^{(i)} + w_0 - y^{(i)})^2$$

- What happens when we only have a single data point (in 1D)?
 - Ill-posed problem: an infinite number of lines perfectly fit the data

X

 γ

Dataset size and linear regression

- Recall linear regression
 - Input $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$, training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$
 - Estimate $w \in \mathbb{R}^d$ and bias $w_0 \in \mathbb{R}$ by minimizing training loss

$$\widehat{w}, \widehat{w}_0 = \operatorname*{argmin}_{w,w_0} \sum_{i=1}^{N} (w. x^{(i)} + w_0 - y^{(i)})^2$$

- What happens when we only have a single data point (in 1D)?
 - Ill-posed problem: an infinite number of lines perfectly fit the data
- Two points in 1D?
- Two points in 2D?
 - the amount of data needed to obtain a meaningful estimate of a model is related to the number of parameters in the model (its complexity)

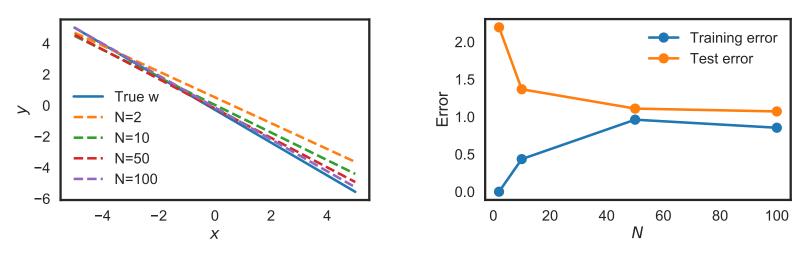
X

Linear regression - generalization

Consider 1D example

- $S_{train} = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$ where $x^{(i)} \sim uniform(-5,5)$ $y^{(i)} = w^* x^{(i)} + \epsilon^{(i)}$ for true w^* and noise $\epsilon^{(i)} \sim \mathcal{N}(0,1)$
- S_{test} similarly generated

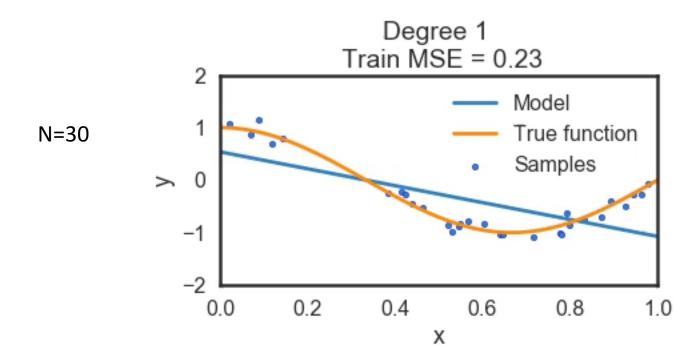
$$\widehat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} (wx^{(i)} - y^{(i)})^2$$



• The training error increases with the size of training data?

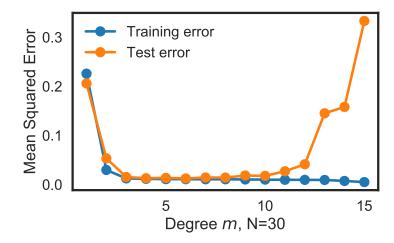
Model complexity vs fit for fixed N

• Recall polynomial regression of degree m in 1D $\widehat{w} = \underset{w \in \mathbb{R}^{m+1}}{\operatorname{argmin}} \sum_{i=1}^{N} (w_0 + w_1 \cdot x^{(i)} + w_2 \cdot x^{(i)^2} + \dots + w_m \cdot x^{(i)^m} - y_t)^2$



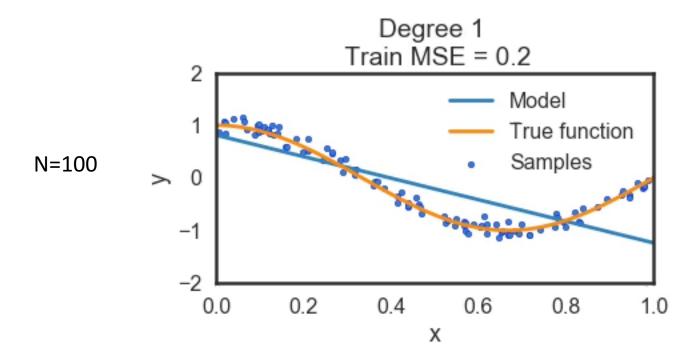
Overfitting with ERM

- For same amount of data, more complex models overfits more than simple model
 - Recall: higher degree → more number of parameters to fit
- What happens if we have more data?



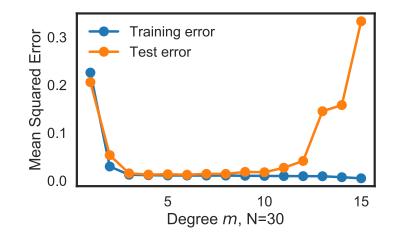
Model complexity vs fit for fixed N

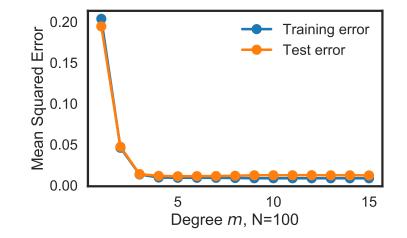
• Recall polynomial regression of degree m in 1D $\widehat{w} = \underset{w \in \mathbb{R}^{m+1}}{\operatorname{argmin}} \sum_{i=1}^{N} (w_0 + w_1 \cdot x^{(i)} + w_2 \cdot x^{(i)^2} + \dots + w_m \cdot x^{(i)^m} - y_t)^2$



Overfitting with ERM

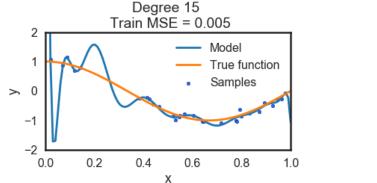
- For same amount of data, complex models overfit more than simple models
 - o Recall: higher degree → more number of parameters to fit
- What happens if we have more data?
 - More complex models require more data to avoid overfitting

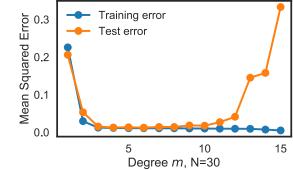




How to avoid overfitting?

How to detect overfitting?





How to avoid overfitting?

 $_{\odot}$ Look at test error and pick m=5?

• Split $S = S_{train} \cup S_{val} \cup S_{test}$ \circ Use performance on S_{val} as proxy for test error

Model selection

- $S = S_{train} \cup S_{val} \cup S_{test}$
- m model classes $\{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_m\}$
 - Recall each \mathcal{H}_r is a set of candidate functions mapping $x \to y$
 - e.g., $\mathcal{H}_r = \{x \to w_0 + w_1, x + w_2, x^2 + \cdots + w_r, x^r\}$
- Minimize training loss $L_{S_{train}}$ on S_{train} to pick best $\hat{f}_r \in \mathcal{H}_r$
 - e.g., $\hat{f}_r(x) = \hat{w}_0 + \hat{w}_1 \cdot x + \hat{w}_2 \cdot x^2 + \cdots \hat{w}_r \cdot x^r$ where $\hat{w}_0, \hat{w}_1, \hat{w}_2, \dots, \hat{w}_r$

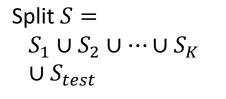
$$= \underset{w_{0},...,w_{r}}{\operatorname{argmin}} \sum_{(x^{(i)},y^{(i)}) \in S_{train}} (w_{0} + w_{1}x^{(i)} + w_{2}x^{(i)^{2}} + \dots + w_{r}x^{(i)^{r}} - y^{(i)})^{2}$$

- Compute validation loss $L_{S_{val}}(\hat{f}_r)$ on S_{val} for each $\{\hat{f}_1, \hat{f}_2, \dots, \hat{f}_m\}$
- Pick $\hat{f}^* = \min\{L_{S_{val}}(\hat{f}_1), L_{S_{val}}(\hat{f}_2), \dots, L_{S_{val}}(\hat{f}_m)\} = \min_r L_{S_{val}}(\hat{f}_r)$
- Evaluate test loss $L_{S_{test}}(\hat{f}^*)$

Model selection

- Can we overfit to validation data?
 - $_{\odot}$ How much data to keep aside for validation?
- What if we don't have enough data?

Cross validation



validation)

- m model classes $\{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_m\}$
- For each k:
 - Training loss L_{S^k_{train}} is loss on S^k_{train} = S₁ ∪ S₂ ... ∪ S_{k-1} ∪ S_{k+1} ... S_K
 Let best f̂^(k)_r ∈ H_r by f̂^(k)_r = argmin L_{S^k_{train}}(f)
 Compute validation loss L_{S_k}(f̂^(k)_r) on S_k for each r
- Pick model based on average validation loss $\hat{r}^* = \underset{r}{\operatorname{argmin}} \sum_{k=1}^{K} L_{S_k} \left(\hat{f}_r^{(k)} \right)$
- $\mathcal{H}_{\hat{r}^*}$ is the correct model class to use.
- $\hat{f}^* = \underset{f \in \mathcal{H}_{\hat{r}^*}}{\operatorname{argmin}} L_{S_{train}^k \cup S_k}(f) \text{ or } \hat{f}^* = \sum_k \hat{f}_{\hat{r}^*}^{(k)}$ (if it makes sense)
- Evaluate $L_{S_{test}}(\hat{f}^*)$