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The Regression Problem

I Problem. Find a desired input-output mapping f : X → R
where the output is a real value.

x = =⇒ y = 0.1◦

“How much should I turn my handle, given the environment?”

I Today’s focus: data-driven approach to regression
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Overview

Approaches to the Regression Problem
Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression
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Running Example: Predict Weight from Height

I Suppose we want a regression model f : X → R that predicts
weight (in pounds) from height (in inches).

I What is the input space?

X = R

I Naive approach: stipulate rules.
I If x ∈ [0, 30), then predict y = 50.
I If x ∈ [30, 60), then predict y = 80.
I If x ∈ [60, 70), then predict y = 150.
I If x ≥ 70, then predict y = 200.

I Pro: Immediately programmable

I Cons: “Uninformed”, requires labor-intensive domain-specific
rule engineering

I There is no learning from data (on the machine’s part).
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Before We Move on to Data-Driven Approaches

Rule-based solutions can go surpringly far.

eliza: a conversation program from the 60s
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Data

I A set of n height-weight pairs
(x(1), y(1)) . . . (x(n), y(n)) ∈ R× R

Q. How can we use this data to obtain a weight predictor?
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Simple Data-Specific Rules

Store all n data points in a dictionary D(x(i)) = y(i).

1. Predict by memorization (“rote learning”):

f(x) =

{
D(x) if x ∈ D

? otherwise

2. Or slightly better, predict by nearest neighbor search:

f(x) = D

(
n

argmin
i=1

∣∣∣∣∣∣x− x(i)∣∣∣∣∣∣)
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Nonparameteric Models

I These are simplest instances of nonparameteric models.
I It just means that the model doesn’t have any associated

parameters before seeing the data.

I Pro: Adapts to data without assuming anything about a given
problem, achieving better “coverage” with more data

I Cons
I Not scalable: need to store the entire data
I Issues with “overfitting”: model excessively dependent on

data, generalizing to new instances can be difficult.
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Parameteric Models
I Dominant approach in machine learning.

I Assumes a fixed form of model fθ defined by a set of
parameters θ.

I The parameters θ are learned from data S =
{
(x(i), y(i))

}n
i=1

by optimizing a data-dependent “objective” or “loss”
function JS(θ) ∈ R.

I Optimizing JS wrt. parameter θ is the learning problem!

θ∗ = argmin
θ

JS(θ)

I Today: Focus on a simplest parametric model called linear
regression.
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Linear Regression Model
I Model parameter: w ∈ R

I Model definition:

fw(x) := wx

I Defines a line with slope w

I Goal: learn w from data S =
{
(x(i), y(i))

}n
i=1

I Need a data-dependent objective function JS(w)
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Least Squares Objective

I Least squares objective: minimize

JLS
S (w) :=

n∑
i=1

(
y(i) − wx(i)

)2
I Idea: fit a line on the training data by reducing the sum of

squared residuals
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The Learning Problem
I Solve for the scalar

wLS
S = argmin

w∈R

n∑
i=1

(
y(i) − wx(i)

)2
︸ ︷︷ ︸

JLS
S (w)

I The objective JLS
S (w) is strongly convex in w (unless all

x(i) = 0), thus the global minimum is uniquely achieved by
wLS
S satisfying

∂JLS
S (w)

∂w

∣∣∣∣
w=wLS

S

= 0

I Solving this system yields the close-form expression:

wLS
S =

∑n
i=1 x

(i)y(i)∑n
i=1(x

(i))2
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Linear Regression with Multi-Dimensional Input
I Input x ∈ Rd is now a vector of d features x1 . . . xd ∈ R.

x1 = 65 (height)
x2 = 29 (age)
x3 = 1 (male indicator)
x4 = 0 (female indicator)

=⇒ y = 140 (pounds)

I Model: w ∈ Rd defining

fw(x) := w · x = w>x = 〈w,x〉
= w1x1 + · · ·+ wdxd

I Least squares objective: exactly the same. Assume n ≥ d!

JLS
S (w) =

n∑
i=1

 y(i)︸︷︷︸
R

−w · x(i)︸ ︷︷ ︸
R

2
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The Learning Problem
I Solve for the vector

wLS
S = argmin

w∈Rd

n∑
i=1

(
y(i) −w · x(i)

)2
= argmin

w∈Rd

||y −Xw||22

where yi = y(i) ∈ R and X ∈ Rn×d has rows x(i).

I ||y −Xw||22 is strongly convex in w (unless rank(X) < d),
thus the global minimum is uniquely achieved by wLS

S

satisfying

∂ ||y −Xw||22
∂w

∣∣∣∣
w=wLS

S

= 0d×1

I Solving this system yields the close-form expression:

wLS
S = (X>X)−1X>y = X+y
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Fitting a Polynomial: 1-Dimensional Input
I In linear regression with scalar input, we learn the slope w ∈ R

of a line such that y ≈ wx.

I In polynomial regression, we learn the coefficients
w1 . . . wp, wp+1 ∈ R of a polynomial of degree p such that

y ≈ w1x
p + · · ·+ wpx+ wp+1︸ ︷︷ ︸

bias term

I How? Upon receiving input x, apply polynomial feature
expansion to calculate a new representation of x:

x 7→


xp

...
x
1


Follow by linear regression with (p+ 1)-dimensional input.
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Degree of Polynomial = Model Complexity
I p = 0: Fit a bias term
I p = 1: Fit a slope and a bias term (i.e., an affine function)
I p = 2: Learn a quadratic function
I . . .

https://machinelearningac.wordpress.com/2011/09/15/model-selection-and-the-triple-tradeoff/22 / 25
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Polynomial Regression with Multi-Dimensional Input
Example: p = 2

x1...
xd

 7→



x21
...
x2d
x1x2

...
xdxd−1
x1
...
xd
1


In general: time to calculate feature expansion O(dp) is
exponential in p.
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Summary

I Regression is the problem of learning a real-valued mapping
f : X → R.

I Linear regressor is a simplest parametric model that uses
parameter w ∈ Rd to define fw(x) = w · x.

I Fitting a linear regressor on a dataset by a least squares
objective so easy that it has a closed-form solution.

I Polynomial regression: feature expansion followed by linear
regression
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Last Remarks

I What if we have a model/objective such that training doesn’t
have a closed-form solution?

I Instead of manually fixing dictating the input representation
(e.g., a polynomial of degree 3), can we automatically learn a
good representation function φ(x) as part of optimization?

I We will answer these questions later in the course (hint:
gradient descent, neural networks).
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