# Linear Regression

Karl Stratos

June 18, 2018

# The Regression Problem

▶ **Problem.** Find a desired input-output mapping  $f : \mathcal{X} \to \mathbb{R}$  where the output is a real value.



"How much should I turn my handle, given the environment?"

# The Regression Problem

▶ **Problem.** Find a desired input-output mapping  $f : \mathcal{X} \to \mathbb{R}$  where the output is a real value.



"How much should I turn my handle, given the environment?"

Today's focus: data-driven approach to regression

#### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

- Suppose we want a regression model f : X → R that predicts weight (in pounds) from height (in inches).
  - What is the input space?

Suppose we want a regression model f : X → R that predicts weight (in pounds) from height (in inches).

• What is the input space?  $\mathcal{X} = \mathbb{R}$ 

- Suppose we want a regression model f : X → ℝ that predicts weight (in pounds) from height (in inches).
  - What is the input space?  $\mathcal{X} = \mathbb{R}$
- Naive approach: stipulate rules.
  - If  $x \in [0, 30)$ , then predict y = 50.
  - If  $x \in [30, 60)$ , then predict y = 80.
  - If  $x \in [60, 70)$ , then predict y = 150.
  - If  $x \ge 70$ , then predict y = 200.

- Suppose we want a regression model f : X → ℝ that predicts weight (in pounds) from height (in inches).
  - What is the input space?  $\mathcal{X} = \mathbb{R}$
- Naive approach: stipulate rules.
  - If  $x \in [0, 30)$ , then predict y = 50.
  - If  $x \in [30, 60)$ , then predict y = 80.
  - If  $x \in [60, 70)$ , then predict y = 150.
  - If  $x \ge 70$ , then predict y = 200.
- Pro: Immediately programmable

- Suppose we want a regression model f : X → R that predicts weight (in pounds) from height (in inches).
  - What is the input space?  $\mathcal{X} = \mathbb{R}$
- Naive approach: stipulate rules.
  - If  $x \in [0, 30)$ , then predict y = 50.
  - If  $x \in [30, 60)$ , then predict y = 80.
  - If  $x \in [60, 70)$ , then predict y = 150.
  - If  $x \ge 70$ , then predict y = 200.
- Pro: Immediately programmable
- Cons: "Uninformed", requires labor-intensive domain-specific rule engineering
  - There is no learning from data (on the machine's part).

### Before We Move on to Data-Driven Approaches

Rule-based solutions can go surpringly far.

| Welcome to                                |                                                                  |        |        |      |         |        |    |
|-------------------------------------------|------------------------------------------------------------------|--------|--------|------|---------|--------|----|
|                                           |                                                                  | EEEEEE | LL     | IIII | ZZZZZZZ | AAA    | AA |
|                                           |                                                                  | EE     | LL     | II   | ZZ      | AA     | AA |
|                                           |                                                                  | EEEEE  | LL     | II   | ZZZ     | АААААА |    |
|                                           |                                                                  | EE     | LL     | II   | ZZ      | AA     | AA |
|                                           |                                                                  | EEEEEE | LLLLLL | IIII | ZZZZZZ  | AA     | AA |
|                                           |                                                                  |        |        |      |         |        |    |
| Eliza is a mock Rogerian psychotherapist. |                                                                  |        |        |      |         |        |    |
| The d                                     | The original program was described by Joseph Weizenbaum in 1966. |        |        |      |         |        |    |
| This                                      | is implementation by Norbert Landsteiner 2005.                   |        |        |      |         |        |    |
|                                           |                                                                  |        |        |      |         |        |    |
|                                           |                                                                  |        |        |      |         |        |    |
| ELIZA: Is something troubling you ?       |                                                                  |        |        |      |         |        |    |
| YOU: Men are all alike.                   |                                                                  |        |        |      |         |        |    |
| ELIZA:                                    | : What is the connection, do you suppose ?                       |        |        |      |         |        |    |
| YOU:                                      | They're always bugging us about something or other.              |        |        |      |         |        |    |
| ELIZA:                                    | IA: Can you think of a specific example ?                        |        |        |      |         |        |    |
| YOU:                                      | Well, my boyfriend made me come here.                            |        |        |      |         |        |    |
| ELIZA:                                    | Is it important to you that your boyfriend made you come here ?  |        |        |      |         |        |    |
| YOU:                                      | He says I'm depressed much of the time.                          |        |        |      |         |        |    |
| ELIZA:                                    | I am sorry to hear that you are depressed.                       |        |        |      |         |        |    |
| YOU:                                      | It's true. I am unhappy.                                         |        |        |      |         |        |    |
| ELIZA:                                    | Can you explain what made you unhappy ?                          |        |        |      |         |        |    |
| YOU:                                      |                                                                  |        |        |      |         |        |    |

ELIZA: a conversation program from the 60s

### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

Data

#### ► A set of *n* height-weight pairs $(x^{(1)}, y^{(1)}) \dots (x^{(n)}, y^{(n)}) \in \mathbb{R} \times \mathbb{R}$

### Height vs. Weigth



Q. How can we use this data to obtain a weight predictor?

# Simple Data-Specific Rules

Store all n data points in a dictionary  $D(x^{(i)}) = y^{(i)}$ .

1. Predict by memorization ("rote learning"):

$$f(x) = \begin{cases} D(x) & \text{if } x \in D \\ ? & \text{otherwise} \end{cases}$$

2. Or slightly better, predict by nearest neighbor search:

$$f(x) = D\left(\arg\min_{i=1}^{n} \left| \left| x - x^{(i)} \right| \right|\right)$$

## Nonparameteric Models

These are simplest instances of nonparameteric models.

- It just means that the model doesn't have any associated parameters before seeing the data.
- Pro: Adapts to data without assuming anything about a given problem, achieving better "coverage" with more data

#### Cons

- Not scalable: need to store the entire data
- Issues with "overfitting": model excessively dependent on data, generalizing to new instances can be difficult.

#### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

- Dominant approach in machine learning.
- Assumes a fixed form of model f<sub>θ</sub> defined by a set of parameters θ.

- Dominant approach in machine learning.
- Assumes a fixed form of model f<sub>θ</sub> defined by a set of parameters θ.
- The parameters θ are <u>learned</u> from data S = {(x<sup>(i)</sup>, y<sup>(i)</sup>)}<sup>n</sup><sub>i=1</sub> by optimizing a data-dependent "objective" or "loss" function J<sub>S</sub>(θ) ∈ ℝ.

- Dominant approach in machine learning.
- Assumes a fixed form of model f<sub>θ</sub> defined by a set of parameters θ.
- The parameters θ are <u>learned</u> from data S = {(x<sup>(i)</sup>, y<sup>(i)</sup>)}<sup>n</sup><sub>i=1</sub> by optimizing a data-dependent "objective" or "loss" function J<sub>S</sub>(θ) ∈ ℝ.

• Optimizing  $J_S$  wrt. parameter  $\theta$  is the learning problem!

$$\theta^* = \operatorname*{arg\,min}_{\theta} J_{\boldsymbol{S}}(\theta)$$

- Dominant approach in machine learning.
- Assumes a fixed form of model f<sub>θ</sub> defined by a set of parameters θ.
- The parameters θ are <u>learned</u> from data S = {(x<sup>(i)</sup>, y<sup>(i)</sup>)}<sup>n</sup><sub>i=1</sub> by optimizing a data-dependent "objective" or "loss" function J<sub>S</sub>(θ) ∈ ℝ.

• Optimizing  $J_S$  wrt. parameter  $\theta$  is the learning problem!

$$\theta^* = \arg\min_{\theta} J_{\boldsymbol{S}}(\theta)$$

 Today: Focus on a simplest parametric model called linear regression.

#### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

# Linear Regression Model

- Model parameter:  $w \in \mathbb{R}$
- Model definition:

$$f_w(x) := wx$$

 $\blacktriangleright$  Defines a line with slope w



- ▶ Goal: learn w from data  $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ ▶ Need a data-dependent objective function  $J_S(w)$

### Least Squares Objective

Least squares objective: minimize

$$J_{S}^{\text{LS}}(w) := \sum_{i=1}^{n} \left( y^{(i)} - w x^{(i)} \right)^{2}$$

 Idea: fit a line on the training data by reducing the sum of squared residuals



#### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

Solve for the scalar

$$w_S^{\text{LS}} = \operatorname*{arg\,min}_{w \in \mathbb{R}} \underbrace{\sum_{i=1}^n \left( y^{(i)} - w x^{(i)} \right)^2}_{J_S^{\text{LS}}(w)}$$

Solve for the scalar

$$w_S^{\text{LS}} = \operatorname*{arg\,min}_{w \in \mathbb{R}} \underbrace{\sum_{i=1}^n \left( y^{(i)} - wx^{(i)} \right)^2}_{J_S^{\text{LS}}(w)}$$

• The objective  $J_S^{LS}(w)$  is strongly convex in w (unless all  $x^{(i)} = 0$ ), thus the global minimum is uniquely achieved by  $w_S^{LS}$  satisfying

$$\left.\frac{\partial J^{\mathrm{LS}}_S(w)}{\partial w}\right|_{w=w^{\mathrm{LS}}_S}=0$$

Solve for the scalar

$$w_S^{\text{LS}} = \operatorname*{arg\,min}_{w \in \mathbb{R}} \underbrace{\sum_{i=1}^n \left( y^{(i)} - w x^{(i)} \right)^2}_{J_S^{\text{LS}}(w)}$$

• The objective  $J_S^{LS}(w)$  is strongly convex in w (unless all  $x^{(i)} = 0$ ), thus the global minimum is uniquely achieved by  $w_S^{LS}$  satisfying

$$\frac{\partial J_S^{\rm LS}(w)}{\partial w}\bigg|_{w=w_S^{\rm LS}} = 0$$

Solving this system yields the close-form expression:

$$w_{S}^{\text{LS}} = \frac{\sum_{i=1}^{n} x^{(i)} y^{(i)}}{\sum_{i=1}^{n} (x^{(i)})^2}$$

16/25

#### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

## Linear Regression with Multi-Dimensional Input

• Input  $\boldsymbol{x} \in \mathbb{R}^d$  is now a <u>vector</u> of d features  $x_1 \dots x_d \in \mathbb{R}$ .

 $x_1 = 65$  (height)  $x_2 = 29$  (age)  $x_3 = 1$  (male indicator)  $x_4 = 0$  (female indicator)

 $\implies y = 140 \text{ (pounds)}$ 

### Linear Regression with Multi-Dimensional Input

• Input  $\boldsymbol{x} \in \mathbb{R}^d$  is now a <u>vector</u> of d features  $x_1 \dots x_d \in \mathbb{R}$ .

$$\begin{array}{l} x_1 = 65 \mbox{ (height)} \\ x_2 = 29 \mbox{ (age)} \\ x_3 = 1 \mbox{ (male indicator)} \\ x_4 = 0 \mbox{ (female indicator)} \end{array} \implies \qquad y = 140 \mbox{ (pounds)} \end{array}$$

► Model:  $w \in \mathbb{R}^d$  defining  $f_w(x) := w \cdot x = w^\top x = \langle w, x \rangle$  $= w_1 x_1 + \dots + w_d x_d$ 

#### Linear Regression with Multi-Dimensional Input

• Input  $\boldsymbol{x} \in \mathbb{R}^d$  is now a vector of d features  $x_1 \dots x_d \in \mathbb{R}$ .

$$\begin{array}{l} x_1 = 65 \text{ (height)} \\ x_2 = 29 \text{ (age)} \\ x_3 = 1 \text{ (male indicator)} \\ x_4 = 0 \text{ (female indicator)} \end{array} \implies y = 140 \text{ (pounds)} \end{array}$$

▶ Model: 
$$w \in \mathbb{R}^d$$
 defining  
 $f_w(x) := w \cdot x = w^\top x = \langle w, x \rangle$   
 $= w_1 x_1 + \dots + w_d x_d$ 

• Least squares objective: exactly the same. Assume  $n \ge d!$ 

$$J_S^{\mathrm{LS}}(oldsymbol{w}) = \sum_{i=1}^n \left( \underbrace{oldsymbol{y}^{(i)}}_{\mathbb{R}} - \underbrace{oldsymbol{w} \cdot oldsymbol{x}^{(i)}}_{\mathbb{R}} 
ight)^2$$

Solve for the vector

$$oldsymbol{w}_S^{ ext{LS}} = rgmin_{oldsymbol{w}\in\mathbb{R}^d} \; \sum_{i=1}^n \left( oldsymbol{y}^{(i)} - oldsymbol{w}\cdotoldsymbol{x}^{(i)} 
ight)^2 = rgmin_{oldsymbol{w}\in\mathbb{R}^d} \; ||oldsymbol{y} - Xoldsymbol{w}||_2^2$$

where  $\boldsymbol{y}_i = y^{(i)} \in \mathbb{R}$  and  $X \in \mathbb{R}^{n \times d}$  has rows  $\boldsymbol{x}^{(i)}$ .

Solve for the vector

$$oldsymbol{w}_S^{ ext{LS}} = rgmin_{oldsymbol{w} \in \mathbb{R}^d} \; \sum_{i=1}^n \left( oldsymbol{y}^{(i)} - oldsymbol{w} \cdot oldsymbol{x}^{(i)} 
ight)^2 = rgmin_{oldsymbol{w} \in \mathbb{R}^d} \; ||oldsymbol{y} - Xoldsymbol{w}||_2^2$$

where  $\boldsymbol{y}_i = y^{(i)} \in \mathbb{R}$  and  $X \in \mathbb{R}^{n \times d}$  has rows  $\boldsymbol{x}^{(i)}$ .

•  $||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||_2^2$  is strongly convex in  $\boldsymbol{w}$  (unless rank $(\boldsymbol{X}) < d$ ), thus the global minimum is uniquely achieved by  $\boldsymbol{w}_S^{\mathrm{LS}}$  satisfying

$$\left. rac{\partial \left| \left| oldsymbol{y} - X oldsymbol{w} 
ight| 
ight|_2^2}{\partial oldsymbol{w}} 
ight|_{oldsymbol{w} = oldsymbol{w}_S^{\mathrm{LS}}} = oldsymbol{0}_{d imes 1}$$

Solve for the vector

$$oldsymbol{w}^{ ext{LS}}_S = rgmin_{oldsymbol{w}\in\mathbb{R}^d} \; \sum_{i=1}^n \left( oldsymbol{y}^{(i)} - oldsymbol{w}\cdotoldsymbol{x}^{(i)} 
ight)^2 = rgmin_{oldsymbol{w}\in\mathbb{R}^d} \; ||oldsymbol{y} - Xoldsymbol{w}||_2^2$$

where  $\boldsymbol{y}_i = y^{(i)} \in \mathbb{R}$  and  $X \in \mathbb{R}^{n \times d}$  has rows  $\boldsymbol{x}^{(i)}$ .

•  $||\boldsymbol{y} - X\boldsymbol{w}||_2^2$  is strongly convex in  $\boldsymbol{w}$  (unless rank(X) < d), thus the global minimum is uniquely achieved by  $\boldsymbol{w}_S^{\mathrm{LS}}$  satisfying

$$rac{\partial \left|\left|oldsymbol{y}-Xoldsymbol{w}
ight|
ight|_2^2}{\partial oldsymbol{w}}
ight|_{oldsymbol{w}=oldsymbol{w}_S^{ ext{LS}}}=oldsymbol{0}_{d imes 1}$$

Solving this system yields the close-form expression:

$$\boldsymbol{w}_{S}^{\mathrm{LS}} = (X^{\top}X)^{-1}X^{\top}\boldsymbol{y} = X^{+}\boldsymbol{y}$$

#### Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach) Model and Objective Parameter Estimation Generalization to Multi-Dimensional Input

Polynomial Regression

# Fitting a Polynomial: 1-Dimensional Input

▶ In linear regression with scalar input, we learn the slope  $w \in \mathbb{R}$  of a line such that  $y \approx wx$ .

# Fitting a Polynomial: 1-Dimensional Input

- ▶ In linear regression with scalar input, we learn the slope  $w \in \mathbb{R}$  of a line such that  $y \approx wx$ .
- ▶ In **polynomial regression**, we learn the coefficients  $w_1 \dots w_p, w_{p+1} \in \mathbb{R}$  of a polynomial of degree p such that

$$y \approx w_1 x^p + \dots + w_p x + \underbrace{w_{p+1}}_{\text{bias term}}$$

# Fitting a Polynomial: 1-Dimensional Input

- ▶ In linear regression with scalar input, we learn the slope  $w \in \mathbb{R}$  of a line such that  $y \approx wx$ .
- ▶ In polynomial regression, we learn the coefficients  $w_1 \dots w_p, w_{p+1} \in \mathbb{R}$  of a polynomial of degree p such that  $u \approx w_1 x^p + \dots + w_n x + \dots + w_{n+1}$

$$y \approx w_1 x^p + \dots + w_p x + \underbrace{w_{p+1}}_{\text{bias term}}$$

How? Upon receiving input x, apply polynomial feature expansion to calculate a *new* representation of x:

$$x \mapsto \begin{bmatrix} x^p \\ \vdots \\ x \\ 1 \end{bmatrix}$$

Follow by linear regression with (p+1)-dimensional input.

### Degree of Polynomial = Model Complexity

▶ p = 0: Fit a bias term

. . .

- ▶ p = 1: Fit a slope and a bias term (i.e., an affine function)
- p = 2: Learn a quadratic function
  - M = 0M = 1t t0 -1-1 0 0  $\boldsymbol{x}$  $\boldsymbol{x}$ M = 3M = 9t 0 -1-1 0 0 xx

https://machinelearningac.wordpress.com/2011/09/15/model-selection-and-the-triple-tradeo22/25

Polynomial Regression with Multi-Dimensional Input Example: p = 2



In general: time to calculate feature expansion  $O(d^p)$  is exponential in p.

# Summary

- **Regression** is the problem of learning a real-valued mapping  $f : \mathcal{X} \to \mathbb{R}$ .
- Linear regressor is a simplest parametric model that uses parameter  $w \in \mathbb{R}^d$  to define  $f_w(x) = w \cdot x$ .
- Fitting a linear regressor on a dataset by a least squares objective so easy that it has a closed-form solution.
- Polynomial regression: feature expansion followed by linear regression

#### Last Remarks

- What if we have a model/objective such that training doesn't have a closed-form solution?
- ► Instead of manually fixing dictating the input representation (e.g., a polynomial of degree 3), can we automatically learn a good *representation function* φ(x) as part of optimization?
- ► We will answer these questions later in the course (hint: gradient descent, neural networks).