Linear Regression

Karl Stratos

June 18, 2018
$1 / 25$

The Regression Problem

- Problem. Find a desired input-output mapping $f: \mathcal{X} \rightarrow \mathbb{R}$ where the output is a real value.

"How much should I turn my handle, given the environment?"

The Regression Problem

- Problem. Find a desired input-output mapping $f: \mathcal{X} \rightarrow \mathbb{R}$ where the output is a real value.

$$
y=0.1^{\circ}
$$

"How much should I turn my handle, given the environment?"

- Today's focus: data-driven approach to regression

Overview

Approaches to the Regression Problem Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

Running Example: Predict Weight from Height

- Suppose we want a regression model $f: \mathcal{X} \rightarrow \mathbb{R}$ that predicts weight (in pounds) from height (in inches).
- What is the input space?

Running Example: Predict Weight from Height

- Suppose we want a regression model $f: \mathcal{X} \rightarrow \mathbb{R}$ that predicts weight (in pounds) from height (in inches).
- What is the input space? $\mathcal{X}=\mathbb{R}$

Running Example: Predict Weight from Height

- Suppose we want a regression model $f: \mathcal{X} \rightarrow \mathbb{R}$ that predicts weight (in pounds) from height (in inches).
- What is the input space? $\mathcal{X}=\mathbb{R}$
- Naive approach: stipulate rules.
- If $x \in[0,30)$, then predict $y=50$.
- If $x \in[30,60)$, then predict $y=80$.
- If $x \in[60,70)$, then predict $y=150$.
- If $x \geq 70$, then predict $y=200$.

Running Example: Predict Weight from Height

- Suppose we want a regression model $f: \mathcal{X} \rightarrow \mathbb{R}$ that predicts weight (in pounds) from height (in inches).
- What is the input space? $\mathcal{X}=\mathbb{R}$
- Naive approach: stipulate rules.
- If $x \in[0,30)$, then predict $y=50$.
- If $x \in[30,60)$, then predict $y=80$.
- If $x \in[60,70)$, then predict $y=150$.
- If $x \geq 70$, then predict $y=200$.
- Pro: Immediately programmable

Running Example: Predict Weight from Height

- Suppose we want a regression model $f: \mathcal{X} \rightarrow \mathbb{R}$ that predicts weight (in pounds) from height (in inches).
- What is the input space? $\mathcal{X}=\mathbb{R}$
- Naive approach: stipulate rules.
- If $x \in[0,30)$, then predict $y=50$.
- If $x \in[30,60)$, then predict $y=80$.
- If $x \in[60,70)$, then predict $y=150$.
- If $x \geq 70$, then predict $y=200$.
- Pro: Immediately programmable
- Cons: "Uninformed", requires labor-intensive domain-specific rule engineering
- There is no learning from data (on the machine's part).

Before We Move on to Data-Driven Approaches

Rule-based solutions can go surpringly far.

```
Welcome to
\begin{tabular}{llcccc} 
EEEEEE & LL & IIII & \(2 Z Z Z Z Z Z\) & AAAAA \\
EE & LL & II & \(2 Z\) & AA & AA \\
EEEEE & LL & II & \(2 Z Z\) & AAAAAAA \\
EE & LL & II & \(2 Z\) & AA & AA \\
EEEEEE & LLLLLL & IIII & \(2 Z Z Z Z Z Z\) & AA & AA
\end{tabular}
Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose ?
YOU: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
YOU: Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
YOU:
```

ELIZA: a conversation program from the 60 s

Overview

Approaches to the Regression Problem Not Data-Driven Data-Driven: Nonparameteric Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

Data

- A set of n height-weight pairs

$$
\begin{aligned}
&\left(x^{(1)}, y^{(1)}\right) \ldots\left(x^{(n)}, y^{(n)}\right) \in \mathbb{R} \times \mathbb{R} \\
& \text { Height vs. Weigth }
\end{aligned}
$$

Q. How can we use this data to obtain a weight predictor?

Simple Data-Specific Rules

Store all n data points in a dictionary $D\left(x^{(i)}\right)=y^{(i)}$.

1. Predict by memorization ("rote learning"):

$$
f(x)=\left\{\begin{aligned}
D(x) & \text { if } x \in D \\
? & \text { otherwise }
\end{aligned}\right.
$$

2. Or slightly better, predict by nearest neighbor search:

$$
f(x)=D\left(\underset{i=1}{\left.\underset{i}{\arg \min }\left\|x-x^{(i)}\right\|\right)}\right.
$$

Nonparameteric Models

- These are simplest instances of nonparameteric models.
- It just means that the model doesn't have any associated parameters before seeing the data.
- Pro: Adapts to data without assuming anything about a given problem, achieving better "coverage" with more data
- Cons
- Not scalable: need to store the entire data
- Issues with "overfitting": model excessively dependent on data, generalizing to new instances can be difficult.

Overview

Approaches to the Regression Problem Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

Parameteric Models

- Dominant approach in machine learning.
- Assumes a fixed form of model f_{θ} defined by a set of parameters θ.

Parameteric Models

- Dominant approach in machine learning.
- Assumes a fixed form of model f_{θ} defined by a set of parameters θ.
- The parameters θ are learned from data $S=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ by optimizing a data-dependent "objective" or "loss" function $J_{S}(\theta) \in \mathbb{R}$.

Parameteric Models

- Dominant approach in machine learning.
- Assumes a fixed form of model f_{θ} defined by a set of parameters θ.
- The parameters θ are learned from data $S=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ by optimizing a data-dependent "objective" or "loss" function $J_{S}(\theta) \in \mathbb{R}$.
- Optimizing J_{S} wrt. parameter θ is the learning problem!

$$
\theta^{*}=\underset{\theta}{\arg \min } J_{S}(\theta)
$$

Parameteric Models

- Dominant approach in machine learning.
- Assumes a fixed form of model f_{θ} defined by a set of parameters θ.
- The parameters θ are learned from data $S=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ by optimizing a data-dependent "objective" or "loss" function $J_{S}(\theta) \in \mathbb{R}$.
- Optimizing J_{S} wrt. parameter θ is the learning problem!

$$
\theta^{*}=\underset{\theta}{\arg \min } J_{S}(\theta)
$$

- Today: Focus on a simplest parametric model called linear regression.

Overview

Approaches to the Regression Problem Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

Linear Regression Model

- Model parameter: $w \in \mathbb{R}$
- Model definition:

$$
f_{w}(x):=w x
$$

- Defines a line with slope w

- Goal: learn w from data $S=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$
- Need a data-dependent objective function $J_{S}(w)$

Least Squares Objective

- Least squares objective: minimize

$$
J_{S}^{\mathrm{LS}}(w):=\sum_{i=1}^{n}\left(y^{(i)}-w x^{(i)}\right)^{2}
$$

- Idea: fit a line on the training data by reducing the sum of squared residuals

Overview

Approaches to the Regression Problem Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

The Learning Problem

- Solve for the scalar

$$
w_{S}^{\mathrm{LS}}=\underset{w \in \mathbb{R}}{\arg \min } \underbrace{\sum_{i=1}^{n}\left(y^{(i)}-w x^{(i)}\right)^{2}}_{J_{S}^{\mathrm{LS}}(w)}
$$

The Learning Problem

- Solve for the scalar

$$
w_{S}^{\mathrm{LS}}=\underset{w \in \mathbb{R}}{\arg \min } \underbrace{\sum_{i=1}^{n}\left(y^{(i)}-w x^{(i)}\right)^{2}}_{J_{S}^{\mathrm{LS}}(w)}
$$

- The objective $J_{S}^{\mathrm{LS}}(w)$ is strongly convex in w (unless all $x^{(i)}=0$), thus the global minimum is uniquely achieved by w_{S}^{LS} satisfying

$$
\left.\frac{\partial J_{S}^{\mathrm{LS}}(w)}{\partial w}\right|_{w=w_{S}^{\mathrm{LS}}}=0
$$

The Learning Problem

- Solve for the scalar

$$
w_{S}^{\mathrm{LS}}=\underset{w \in \mathbb{R}}{\arg \min } \underbrace{\sum_{i=1}^{n}\left(y^{(i)}-w x^{(i)}\right)^{2}}_{J_{S}^{\mathrm{LS}}(w)}
$$

- The objective $J_{S}^{\mathrm{LS}}(w)$ is strongly convex in w (unless all $x^{(i)}=0$), thus the global minimum is uniquely achieved by w_{S}^{LS} satisfying

$$
\left.\frac{\partial J_{S}^{\mathrm{LS}}(w)}{\partial w}\right|_{w=w_{S}^{\mathrm{LS}}}=0
$$

- Solving this system yields the close-form expression:

$$
w_{S}^{\mathrm{LS}}=\frac{\sum_{i=1}^{n} x^{(i)} y^{(i)}}{\sum_{i=1}^{n}\left(x^{(i)}\right)^{2}}
$$

Overview

Approaches to the Regression Problem Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

Linear Regression with Multi-Dimensional Input

- Input $\boldsymbol{x} \in \mathbb{R}^{d}$ is now a vector of d features $x_{1} \ldots x_{d} \in \mathbb{R}$.

$$
\begin{aligned}
& x_{1}=65 \text { (height) } \\
& x_{2}=29 \text { (age) } \\
& x_{3}=1 \text { (male indicator) } \\
& x_{4}=0 \text { (female indicator) }
\end{aligned} \quad \Longrightarrow \quad y=140 \text { (pounds) }
$$

Linear Regression with Multi-Dimensional Input

- Input $\boldsymbol{x} \in \mathbb{R}^{d}$ is now a vector of d features $x_{1} \ldots x_{d} \in \mathbb{R}$.

$$
\begin{aligned}
& x_{1}=65 \text { (height) } \\
& x_{2}=29 \text { (age) } \\
& x_{3}=1 \text { (male indicator) } \\
& x_{4}=0 \text { (female indicator) }
\end{aligned}
$$

- Model: $\boldsymbol{w} \in \mathbb{R}^{d}$ defining

$$
\begin{aligned}
f_{\boldsymbol{w}}(\boldsymbol{x}) & :=\boldsymbol{w} \cdot \boldsymbol{x}=\boldsymbol{w}^{\top} \boldsymbol{x}=\langle\boldsymbol{w}, \boldsymbol{x}\rangle \\
& =w_{1} x_{1}+\cdots+w_{d} x_{d}
\end{aligned}
$$

Linear Regression with Multi-Dimensional Input

- Input $\boldsymbol{x} \in \mathbb{R}^{d}$ is now a vector of d features $x_{1} \ldots x_{d} \in \mathbb{R}$.

$$
\begin{aligned}
& x_{1}=65 \text { (height) } \\
& x_{2}=29 \text { (age) } \\
& x_{3}=1 \text { (male indicator) } \\
& x_{4}=0 \text { (female indicator) }
\end{aligned}
$$

- Model: $\boldsymbol{w} \in \mathbb{R}^{d}$ defining

$$
\begin{aligned}
f_{\boldsymbol{w}}(\boldsymbol{x}) & :=\boldsymbol{w} \cdot \boldsymbol{x}=\boldsymbol{w}^{\top} \boldsymbol{x}=\langle\boldsymbol{w}, \boldsymbol{x}\rangle \\
& =w_{1} x_{1}+\cdots+w_{d} x_{d}
\end{aligned}
$$

- Least squares objective: exactly the same. Assume $n \geq d$!

$$
J_{S}^{\mathrm{LS}}(\boldsymbol{w})=\sum_{i=1}^{n}(\underbrace{y^{(i)}}_{\mathbb{R}}-\underbrace{\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}}_{\mathbb{R}})^{2}
$$

The Learning Problem

- Solve for the vector

$$
\begin{aligned}
& \boldsymbol{w}_{S}^{\mathrm{LS}}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)^{2}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2} \\
& \text { where } \boldsymbol{y}_{i}=y^{(i)} \in \mathbb{R} \text { and } X \in \mathbb{R}^{n \times d} \text { has rows } \boldsymbol{x}^{(i)}
\end{aligned}
$$

The Learning Problem

- Solve for the vector

$$
\boldsymbol{w}_{S}^{\mathrm{LS}}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)^{2}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}
$$

where $\boldsymbol{y}_{i}=y^{(i)} \in \mathbb{R}$ and $X \in \mathbb{R}^{n \times d}$ has rows $\boldsymbol{x}^{(i)}$.

- $\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}$ is strongly convex in \boldsymbol{w} (unless rank $(X)<d$), thus the global minimum is uniquely achieved by $\boldsymbol{w}_{S}^{\mathrm{LS}}$ satisfying

$$
\left.\frac{\partial\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}}{\partial \boldsymbol{w}}\right|_{\boldsymbol{w}=\boldsymbol{w}_{S}^{\mathrm{LS}}}=\mathbf{0}_{d \times 1}
$$

The Learning Problem

- Solve for the vector

$$
\boldsymbol{w}_{S}^{\mathrm{LS}}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)^{2}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min }\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}
$$

$$
\text { where } \boldsymbol{y}_{i}=y^{(i)} \in \mathbb{R} \text { and } X \in \mathbb{R}^{n \times d} \text { has rows } \boldsymbol{x}^{(i)} .
$$

- $\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}$ is strongly convex in \boldsymbol{w} (unless rank $(X)<d$), thus the global minimum is uniquely achieved by $\boldsymbol{w}_{S}^{\mathrm{LS}}$ satisfying

$$
\left.\frac{\partial\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}}{\partial \boldsymbol{w}}\right|_{\boldsymbol{w}=\boldsymbol{w}_{S}^{\mathrm{LS}}}=\mathbf{0}_{d \times 1}
$$

- Solving this system yields the close-form expression:

$$
\boldsymbol{w}_{S}^{\mathrm{LS}}=\left(X^{\top} X\right)^{-1} X^{\top} \boldsymbol{y}=X^{+} \boldsymbol{y}
$$

Overview

Approaches to the Regression Problem Not Data-Driven
Data-Driven: Nonparameteric
Data-Driven: Parameteric

Linear Regression (a Parameteric Approach)
Model and Objective
Parameter Estimation
Generalization to Multi-Dimensional Input

Polynomial Regression

Fitting a Polynomial: 1-Dimensional Input

- In linear regression with scalar input, we learn the slope $w \in \mathbb{R}$ of a line such that $y \approx w x$.

Fitting a Polynomial: 1-Dimensional Input

- In linear regression with scalar input, we learn the slope $w \in \mathbb{R}$ of a line such that $y \approx w x$.
- In polynomial regression, we learn the coefficients $w_{1} \ldots w_{p}, w_{p+1} \in \mathbb{R}$ of a polynomial of degree p such that

$$
y \approx w_{1} x^{p}+\cdots+w_{p} x+\underbrace{w_{p+1}}_{\text {bias term }}
$$

Fitting a Polynomial: 1-Dimensional Input

- In linear regression with scalar input, we learn the slope $w \in \mathbb{R}$ of a line such that $y \approx w x$.
- In polynomial regression, we learn the coefficients $w_{1} \ldots w_{p}, w_{p+1} \in \mathbb{R}$ of a polynomial of degree p such that

$$
y \approx w_{1} x^{p}+\cdots+w_{p} x+\underbrace{w_{p+1}}_{\text {bias term }}
$$

- How? Upon receiving input x, apply polynomial feature expansion to calculate a new representation of x :

$$
x \mapsto\left[\begin{array}{c}
x^{p} \\
\vdots \\
x \\
1
\end{array}\right]
$$

Follow by linear regression with $(p+1)$-dimensional input.

Degree of Polynomial $=$ Model Complexity

- $p=0$: Fit a bias term
- $p=1$: Fit a slope and a bias term (i.e., an affine function)
- $p=2$: Learn a quadratic function
- ...

Polynomial Regression with Multi-Dimensional Input

Example: $p=2$

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{d}^{2} \\
x_{1} x_{2} \\
\vdots \\
x_{d} x_{d-1} \\
x_{1} \\
\vdots \\
x_{d} \\
1
\end{array}\right]
$$

In general: time to calculate feature expansion $O\left(d^{p}\right)$ is exponential in p.

Summary

- Regression is the problem of learning a real-valued mapping $f: \mathcal{X} \rightarrow \mathbb{R}$.
- Linear regressor is a simplest parametric model that uses parameter $\boldsymbol{w} \in \mathbb{R}^{d}$ to define $f_{\boldsymbol{w}}(\boldsymbol{x})=\boldsymbol{w} \cdot \boldsymbol{x}$.
- Fitting a linear regressor on a dataset by a least squares objective so easy that it has a closed-form solution.
- Polynomial regression: feature expansion followed by linear regression

Last Remarks

- What if we have a model/objective such that training doesn't have a closed-form solution?
- Instead of manually fixing dictating the input representation (e.g., a polynomial of degree 3), can we automatically learn a good representation function $\phi(\boldsymbol{x})$ as part of optimization?
- We will answer these questions later in the course (hint: gradient descent, neural networks).

