Day 10: Review

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

29 June 2018

Supervised learning – key questions

- Data: what kind of data can we get? how much data can we get?
- Model: what is the correct model for my data? – want to minimize the effort put into this question!
- Training: what resources computation/memory does the algorithm need to estimate the model \hat{f} ?
- Testing: how well will *f̂* perform when deployed? what is the computational/memory requirement during deployment?

Linear regression

- Input $x \in \mathcal{X} \subset \mathbb{R}^d$, output $y \in \mathbb{R}$, want to learn $f: \mathcal{X} \to \mathbb{R}$
- Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$
- Parameterize candidate $f: \mathcal{X} \to \mathbb{R}$ by linear functions, $\mathcal{H} = \{ \mathbf{x} \to \mathbf{w}, \mathbf{x}; \mathbf{w} \in \mathbb{R}^d \}$
- Estimate w by minimizing loss on training data

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{LS}(\boldsymbol{w}) := \sum_{i=1}^{N} \left(\boldsymbol{w}. \, \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)} \right)^{2}$$

∘ $J_S^{LS}(w)$ is convex in $w \rightarrow$ minimize $J_S^{LS}(w)$ by setting gradient to 0

 $\circ \nabla_{\boldsymbol{w}} J_{S}^{LS}(\boldsymbol{w}) = \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)}) \boldsymbol{x}^{(i)}$

• Closed form solution $\widehat{\boldsymbol{w}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}\boldsymbol{y}$

• Can get non-linear functions by mapping $x \to \phi(x)$ and doing linear regression on $\phi(x)$

Overfitting

- For same amount of data, more complex models (e.g., higher degree polynomials) overfit more
- or need more data to fit more complex models
- complexity \approx number of parameters

Model selection

- m model classes $\{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_m\}$
- $S = S_{train} \cup S_{val} \cup S_{test}$
- Train on S_{train} to pick best $\hat{f}_r \in \mathcal{H}_r$
- Pick \hat{f}^* based on validation loss on S_{val}
- Evaluate test loss $L_{S_{test}}(\hat{f}^*)$

Regularization

- Complexity of model class can also be controlled by norm of parameters – smaller range of values allowed
- Regularization for linear regression argmin $J_{S}^{LS}(w) + \lambda ||w||_{2}^{2}$

$$\underset{w}{\operatorname{argmin}} J_{S}^{LS}(w) + \lambda \|w\|_{1}$$

• Again do model selection to pick λ - using S_{val} or cross-validation

Classification

• Output $y \in \mathcal{Y}$ takes discrete set of values, e.g., $\mathcal{Y} = \{0,1\}$ or $\mathcal{Y} = \{-1,1\}$ or $\mathcal{Y} = \{spam, nospam\}$

Unlike regression, label-values do not have meaning

- Classifiers divide the space of input \mathcal{X} (often \mathbb{R}^d) to "regions" where each region is assigned a label
- Non-parametric models
 - k-nearest neighbors regions
 defined based on nearest neighbors
 - decision trees structured rectangular regions
- Linear models classifier regions are halfspaces

Classification – logistic regression

Logistic loss $\ell(f(\mathbf{x}), y) = \log(1 + \exp(-f(\mathbf{x})y))$

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}, S = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}): i = 1, 2, ..., N\}$
- Linear model $f(x) = f_w(x) = w.x$
- Output classifier $\hat{y}(x) = \operatorname{sign}(w, x)$
- Empirical risk minimization:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i} \log \left(1 + \exp(-\boldsymbol{w}, \boldsymbol{x}^{(i)} \boldsymbol{y}^{(i)}) \right)$$

• Alternative, probabilistic formulation:

$$\Pr(y = 1 | x) = \frac{1}{1 + \exp(-w.x)}$$

• Multi-class generalization: $\mathcal{Y} = \{1, 2, ..., m\}$ $\Pr(y|\mathbf{x}) = \frac{\exp(-\mathbf{w}_y, \mathbf{x})}{\sum_{y'} \exp(-\mathbf{w}_{y'}, \mathbf{x})}$

• Can again get non-linear decision boundaries by mapping $x o \phi(x)$

1.0

Classification – maximum margin classifier

 x_2

Separable data

- Original formulation
- $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{argmax}} \min_{i} \frac{y^{(i)} \boldsymbol{w}. \boldsymbol{x}^{(i)}}{\|\boldsymbol{w}\|}$
- Fixing ||w|| = 1 $\widehat{w} = \underset{w}{\operatorname{argmax}} \min_{i} y^{(i)} (w, x^{(i)}) \text{ s.t. } ||w|| = 1$
- Fixing $\min_{i} y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} = 1$
- $\widetilde{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 \text{ s.t. } \forall i, y^{(i)}(\boldsymbol{w}, \boldsymbol{x}^{(i)}) \ge 1$

Slack variables for non-separable data

 $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}, \{\xi_i \ge 0\}}{\operatorname{argmin}} \|\boldsymbol{w}\|^2 + \lambda \sum_i \xi_i \quad \text{s.t.} \quad \forall i, y^{(i)} (\boldsymbol{w}, \boldsymbol{x}^{(i)}) \ge 1 - \xi_i$

 $= \underset{w,\{\xi_i \ge 0\}}{\operatorname{argmin}} \|w\|^2 + \lambda \sum_i \max(0, 1 - y^{(i)}(w, x^{(i)}))$

 \dot{x}_1

Kernel trick

• Using representor theorem $\boldsymbol{w} = \sum_{i=1}^{N} \beta_i \boldsymbol{x}^{(i)}$

$$\min_{\boldsymbol{w}} \|\boldsymbol{w}\|^2 + \lambda \sum_{i} \max(0, 1 - y^{(i)} \boldsymbol{w}. \boldsymbol{x}^{(i)})$$
$$\equiv \min_{\boldsymbol{\beta} \in \mathbb{R}^N} \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{G} \boldsymbol{\beta} + \lambda \sum_{i} \max(0, 1 - y^{(i)} (\boldsymbol{G} \boldsymbol{\beta})_i)$$

 $G \in \mathbb{R}^{N \times N}$ with $G_{ij} = x^{(i)} \cdot x^{(j)}$ is called the gram matrix

- Optimization depends on $x^{(i)}$ only through $G_{ij} = x^{(i)} \cdot x^{(j)}$
- For prediction \widehat{w} . $x = \sum_i \beta_i x^{(i)}$. x, we again only need $x^{(i)}$. x
- Function $K(\mathbf{x}, \mathbf{x}') = \mathbf{x} \cdot \mathbf{x}'$ is called the Kernel
- When learning non-linear classifiers using feature transformations $x \to \phi(x)$ and $f_w(x) = w. \phi(x)$
 - Classifier fully specified in terms of $K_{\phi}(x, x') = K(\phi(x), \phi(x'))$
 - $\phi(x)$ itself can be very very high dimensional (maybe even infinite dimensional)
 - \rightarrow e.g., polynomial kernels, RBF kernel

Optimization

• ERM+regularization optimization problem

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{\lambda}(\boldsymbol{w}) := \sum_{i=1}^{N} \ell(\boldsymbol{w}. \phi(\boldsymbol{x}^{(i)}), y^{(i)}) + \lambda \|\boldsymbol{w}\|$$

- If $J_S^{\lambda}(w)$ is convex in w, then \hat{w} is optimum if and only if gradient at \hat{w} is 0, i.e., $\nabla J_S^{\lambda}(\hat{w}) = 0$
- Gradient descent: start with initialization w^0 and iteratively update

$$\circ \boldsymbol{w^{t+1}} = \boldsymbol{w^t} - \eta^t \nabla J_S^{\lambda}(\boldsymbol{w^t})$$

- where $\nabla J_S^{\lambda}(\boldsymbol{w^t}) = \sum_i \nabla \ell (\boldsymbol{w^t}, \phi(\boldsymbol{x^{(i)}}), y^{(i)}) + \lambda \nabla \| \boldsymbol{w^t} \|$
- Stochastic gradient descent:
 - $_{\circ}~$ use gradients from only one example
 - $\circ \boldsymbol{w^{t+1}} = \boldsymbol{w^t} \eta^t \, \widehat{\nabla}^{(i)} J_S^{\lambda}(\boldsymbol{w^t})$

• where $\widehat{\nabla}^{(i)} J_S^{\lambda}(\boldsymbol{w^t}) = \nabla \ell(\boldsymbol{w^t}, \phi(\boldsymbol{x^{(i)}}), y^{(i)}) + \frac{\lambda}{N} \nabla \|\boldsymbol{w^t}\|$ for a random sample $(\boldsymbol{x^{(i)}}, y^{(i)})$

Other classification models

- Optimal unrestricted predictor
 - Regression + squared loss $\rightarrow f^{**}(\mathbf{x}) = \mathbf{E}[y|\mathbf{x}]$
 - Classification + 0-1 loss $\rightarrow \hat{y}^{**}(x) = \operatorname{argmax}_{c} \Pr(y = c | x)$
- Discriminative models: directly model Pr(y|x), e.g., logistic regression
- Generative models: model full joint distribution Pr(y, x) = Pr(x|y) Pr(y)
- Why generative models?
 - One conditional might be simpler to model with prior knowledge, e.g., compare specifying Pr(image|digit = 1) vs Pr(digit = 1|image)
 - Naturally handles missing data
- Two examples of generative models
 - Naïve Bayes classifier digit recognition, document classification
 - Hidden Markov model POS tagging

Other classifiers

- Naïve Bayes classifier: with d features $x = [x_1, x_2, ..., x_d]$ where each $x_1, x_2, ..., x_d$ can take one of K values $\rightarrow C K^d$ parameters
 - **NB** assumption: features are independent given class $y \rightarrow C K d$ params.

 $\Pr(x_1, x_2, ..., x_d | y) = \Pr(x_1 | y) \Pr(x_2 | y) ... \Pr(x_d | y) = \prod_{k=1}^d \Pr(x_k | y)$

- Training amounts to averaging samples across classes
- Hidden Markov model: variable length input/observations
 {x₁, x₂, ..., x_m} (e.g., words) and variable length output/state
 {y₁, y₂, ..., y_m} (e.g., tags)
 - HMM assumption: a) current state conditioned on immediate previous state is conditionally independent of all other variables, and (b) current observation conditioned on current state is conditionally independent of all other variables.

 $\Pr(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_m) = \Pr(y_1) \Pr(x_1 | y_1) \prod_{k=2}^m \Pr(y_k | y_{k-1}) \Pr(y_k | x_k)$

Parameters estimated using MLE dynamic programming

Feed-Forward Neural Networks

Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
 - "Input Units" $v_1 \dots v_d \in V$: no incoming edges have value $o[v_i] = x_i$
 - Each edge $u \rightarrow v$ has weight $W[u \rightarrow v]$
 - Pre-activation $a[v] = \sum_{u \to v \in E} W[u \to v] o[u]$
 - Output value $o[v] = \sigma(a[v])$
 - "Output Unit" $v_{out} \in V$, $f_W(\mathbf{x}) = a[v_{out}]$

Figure credit: Nati Srebro

Feed forward fully connected network

- L hidden layers with layer l havinb d_l hidden units
- Parameters:
 - for each intermediate layer $W^{(l)} \in \mathbb{R}^{d_{l-1} \times d_l}$ where $d_0 = d$
 - final layer weights $\boldsymbol{w}^{(\boldsymbol{L}+1)} \in \mathbb{R}^{d_L}$
- For 2-hidden layer $f_W(x) = w^{(3)^{\top}} \sigma(W^{(2)} \sigma(W^{(1)}x))$. More generally,

$$f_{\boldsymbol{W}}(\boldsymbol{x}) = \boldsymbol{w}^{(L+1)^{\mathsf{T}}} \sigma \left(\boldsymbol{W}^{(L-1)} \dots \sigma \left(\boldsymbol{W}^{(2)} \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{x} \right) \right) \right)$$

Back-Propagation

• Efficient calculation of $\nabla_W \ell(f_W(x), y)$ using chain rule

$$a[v] = \sum_{u \to v \in E} W^{(t)}[u \to v] o[u]$$
$$o[v] = \sigma(a[v])$$

$$z[v_{out}] = \ell'(a[v_{out}], y)$$
$$z[u] = \sigma'(a[u]) \sum_{u \to v} W^{(t)}[u \to v] z[v]$$

- Forward propagation: calculate activations a[v] and outputs o[v]
- Backward propagation: calculate $Z[v] \stackrel{\text{def}}{=} \frac{\partial \ell(f_W(x), y)}{\partial a[v]}$
- Gradient descent update: using $\frac{\partial \ell(f_W(x), y)}{\partial W^{(t)}[u \to v]} = z[v]o[u]$ $W^{(t+1)}[u \to v] = W^{(t+1)}[u \to v] - \eta^{(t)} \frac{\partial \ell(f_W(x), y)}{\partial W^{(t)}[u \to v]}$

Optimization for NN training

- Check
 - Add gradCheck()
 - Randomly permute data for SGD sequence
- Choose activations to avoid
 - Gradient clipping
 - Gradient explosion
- SGD "knobs" in NN training
 - Initialization \rightarrow Kaiming/Xavier, or warm start initialization.
 - $_{\circ}$ Step size/learning rate \rightarrow very important to tune based on training/ validation loss
 - SGD variants
 - Momentum for SGD → usually added with SGD (default parameter momentum=0.9 often works well)
 - Adaptive variants of SGD \rightarrow common alternative to SGD+momentum is Adam with $\beta_2 \gg \beta_1$, e. g., $\beta_2 = 0.999$, $\beta_1 = 0.9$
 - Mini-batch SGD → \sim 128 common
 - Batch normalization
 → use batch normalization

Regularization in NN

- Explicit regularization
 - Data augmentation → Augment training data with known invariances/noise models → very effective
 - think of what is the right data augmentation for your problem
 - Weight decay $\rightarrow \arg \min_{\mathbf{W}} L_S(f_{\mathbf{W}}) + \frac{\lambda}{2} \|\mathbf{W}\|^2$
 - tune step sizes/ λ parameter
 - Dropout → Randomly (temporarily) remove p fraction of the units in each step of SGD → usually very useful
 - \circ Early stopping
- Choice of architecture affects validation performance/generalization!
- Many optimization choices also affect validation performance—unlike convex optimization problems with a unique global minimum, where optimization algorithm only changes the speed/computation of training → Not well understood phenomenon
 - Keep in mind while making choices in previous slides

NN architectures – CNNs

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

- Each convolution layer has input of size $W_{in} \times H_{in} \times D_{in}$
- Hyperparameters: Number of filters D_{out}; Size of filters K₁×K₂; Stride S; Zero padding P
- Parameters: $K_1 \times K_2 \times D_{in} \times D_{out}$

• Output:
$$W_{out} \times H_{out} \times D_{out}$$
 where

•
$$W_{out} = (W_{in} - K_1 - 2P)/S + 1$$

•
$$H_{out} = (H_{in} - K_2 - 2P)/S + 1$$

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

CNNs

Typical layers

- Convolution+ReLU
- Max-pooling
- Final few fully connected layers

Common datasets

- MNIST (small)
- CIFAR-10 & CIFAR-100
- ImageNet
- MS COCO
- Tip: Try warm-start initialization from models pre-trained on imageNet

			Softmax
			FC 1000
		Softmax	FC 4098
	fo8	FC 1000	FC 4098
	fo7	FC 4098	Pod
	108	FC 4096	3x3 conv, 512
		Pod	3x3 conv, 512
	conv6-3	3x3 canv, 512	3x3 conv, 512
	conv6-2	3x3 canv, 512	3x3 conv, 512
	conv6-1	3x3 conv, 512	Pool
		Pod	3x3 conv, 512
Softmax	conv4-3	3x3 conv, 512	3x3 conv, 512
FC 1000	conv4-2	3x3 conv, 512	3x3 conv, 512
FC 4096	conv4-1	3x3 conv. 512	3x3 conv, 512
FC 4098		Pod	Pod
Pool	conv3-2	3x3 canv, 256	3x3 conv, 256
3x3 conv, 256	conv3-1	3x3 canv, 256	3x3 conv, 256
3x3 conv, 384		Pod	Pod
Pool	conv2-2	3x3 conv, 128	3x3 conv, 128
3x3 canv, 384	conv2-1	3x3 conv, 128	3x3 conv, 128
Pod		Pod	Pod
5x5 conv, 256	conv1-2	3x3 conv, 64	3x3 conv, 64
11x11 conv, 96	conv1-1	3x3 conv, 64	3x3 conv, 64
input		input	input
A1		Vecto	VICENCE
AlexNet		VGG16	VGG19

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

100

COTTV

comv4

comv3

com/2

Residual Networks

Research

- $h_l = h_{l-1} + ReLU(Conv(h_{l-1}))$
- Avoids gradient saturation
- Enabled training of really deep networks
 - Typical choice is 152 layers
 - 1000+ layers have been trained with ResNets
- Can also extend for other architectures like FCNs/RNNs

NN architectures – RNNs

- Input: each example is a sequence $[x_1, x_2, ..., x_n \in \mathbb{R}^d]$
- Labels: can be single label y or another sequence
- Output of RNNs: $[h_1, h_2, ..., h_n \in \mathbb{R}^{d'}]$
- Note: this is just one example, the training dataset will contain many such examples
- RNN model: For i = 1, 2, ..., n $h_i = \tanh(Wx_i + Vh_{i-1})$

NN architectures – RNNs

- RNN model: For i = 1, 2, ..., n $h_i = tanh(Wx_i + Vh_{i-1})$
- *h_n* = tanh(*Wx_n* + *V* tanh(*Wx_{n-1}* + *V*(... + tanh(*Wx₁* + *Vh₀*))))
 Like fully connected networks, but parameters are reused
- loss $\ell([h_1, h_2, \dots, h_n], y)$

[A. Karpathy]

• Can create deeper networks by using $[h_1, h_2, ..., h_n \in \mathbb{R}^{d'}]$ as sequential input to next layer

NN Architectures LSTMs

RNN produces a sequence of output vectors

 $x_1 \dots x_N \longrightarrow h_1 \dots h_N$

LSTM produces "memory cell vectors" along with output

 $x_1 \ldots x_N \longrightarrow c_1 \ldots c_N, h_1 \ldots h_N$

These c1 ... cN enable the network to keep or drop information from previous states.

NN Architectures LSTMs

• Simple RNNs

• In LSTMs, each time frame associated with a complex cell

Figures taken from blog post on LSTMs by C. Olah

NN Architecture LSTMs

• Cell state update

• Output gate

Figures taken from blog post on LSTMs by C. Olah

NN architectures – encoder-decoder

See lecture slides for exact equations

- Encoder RNN: First encodes in the input and captures the context in ξ
- Decoder RNN: decodes the output from ξ
- Decoder with attention: instead of relying just on final context ξ, use a linear combination of all the hidden states in the encoder (not depicted in figure)

Ensembles

• Reduce bias:

 build ensemble of low-variance, high-bias predictors sequentially to reduce bias

- AdaBoost: binary classication, exponential surrogate loss
- Reduce variance:
 - build ensemble of high-variance, low-bias predictors in parallel and use randomness and averaging to reduce variance
 - random forests, bagging
- Problems
 - Computationally expensive (train and test time)
 - Often loose interpretability

Bagging: Bootstrap aggregation

Averaging independent models reduces variance without increasing bias.

- But we don't have independent datasets!
 - $_{\circ}~$ Instead take repeated bootstrap samples from training set S
- Bootstrap sampling: Given dataset $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$, create S' by drawing N examples at random with replacement from S
- Bagging:
 - Create M bootstrap datasets S_1, S_2, \dots, S_M
 - Train distinct models $f_m: \mathcal{X} \to \mathcal{Y}$ by training only on S_m
 - Output final predictor
 - $F(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$ (for regression)

or $F(x) \stackrel{_{M}}{=} majority(f_{m}(x))$ (for classification)

Adaboost

Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For t = 1, 2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier f_t has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$$

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$$

Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$

Example credit: Greg Shaknarovich

Adaboost

Training data $S = \{ (x^{(i)}, y^{(i)}) : i = 1, 2, ..., N \}$

- Maintain weights $W_i^{(t)}$ for each example $(x^{(i)}, y^{(i)})$, initially all $W_i^{(1)} = \frac{1}{N}$
- For t = 1, 2, ..., T
 - Normalize weights $D_i^{(t)} = \frac{W_i^{(t)}}{\sum_i W_i^{(t)}}$
 - Pick a classifier f_t has better than
 0.5 weighted loss

$$\epsilon_t = \sum_{i=1}^N D_i^{(t)} \ell^{01}(f_t(x^{(i)}), y^{(i)})$$

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

Update weights

$$W_i^{(t+1)} = W_i^{(t)} \exp\left(-\alpha_t y^{(i)} f_t(x^{(i)})\right)$$

• Output strong classifier $F_T(x) = \operatorname{sign}(\sum_t \alpha_t f_t(x))$

Example credit: Greg Shaknarovich

Supervised learning summary

- Linear regression
- Classification
 - Logistic regression
 - Maximum margin classifiers, kernel trick
 - Generative models: Naïve Bayes, HMMs
 - Neural networks
- Ensemble methods
- Main concepts:
 - Detecting and avoiding overfitting and the tradeoff between bias and complexity
 - Learning parameters using empirical risk minimization (ERM) plus regularization
 - Optimization techniques: specially (stochastic) gradient descent → for both convex and non-convex problems

Unsupervised learning

- Unsupervised learning: Requires data $x \in \mathcal{X}$, but no labels
- Goal?: Compact representation of the data by detecting patterns

 $_{\circ}\,$ e.g. Group emails by topic

- Useful when we don't know what we are looking for
 makes evaluation tricky
- Applications in visualization, exploratory data analysis, semi-supervised learning

Linear dimensionality reduction

Problem: Given high dimensional feature x = [x₁, x₂, ..., x_d] ∈ ℝ^d find transformations z(x) = [z₁(x), z₂(x), ..., z_k(x)] ∈ ℝ^k so that "almost all useful information" about x is retained in z(x)

• Learn $z(\mathbf{x})$ from dataset of examples $S = \{\mathbf{x}^{(i)} \in \mathbb{R}^d : i = 1, 2, ..., N\}$

- Linear dimensionality reduction: z(x) restricted to be a linear function
- PCA: given data $x \in \mathbb{R}^d$, find $U \in \mathbb{R}^{k \times d}$ to minimize $\min_{U} \sum_{i} \| \boldsymbol{U}^\top \boldsymbol{U} \boldsymbol{x}^{(i)} - \boldsymbol{x}^{(i)} \|_2^2 \quad s.t. \quad \boldsymbol{U} \boldsymbol{U}^\top = \boldsymbol{I}$
 - solution given by eigenvalue decomposition of $\hat{\Sigma}_{\chi\chi} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} x^{(i)^{\top}}$
 - $_{\circ}$ finds directions of maximum variation in data
 - $_{\circ}$ check: make sure to center the data so that each feature has zero mean
- Can get non-linear embedding by doing PCA on $\phi(x)$ \rightarrow Kernel PCA

Non linear dimensionality reduction

- Isomap: Neighborhood of points represented using the kNN-graph with weights proportional to distance between the points
 - geodesic distance d(x, x') =length of shortest path in the graph
 - Use any shortest path algorithm can be used to construct a matrix $M \in \mathbb{R}^{N \times N}$ with $M_{ij} = d(x^{(i)}, x^{(j)})$ for all $x^{(i)}, x^{(j)} \in S$
 - MDS: Find a (low dimensional) embedding z(x) of x so that geodesic distance match the Euclidean distance in the transformed space

$$\min_{z} \sum_{i,j \in [N]} (\|z(x^{(i)}) - z(x^{(j)})\| - M_{ij})^2$$

• Works well for small scale problems

Non linear dimensionality reduction

• Autoencoders:

- $\phi(x) = f_{W_1}(x)$
- $\widetilde{x} = f_{W_2}(\phi(x))$
- some loss $\ell(\tilde{x}, x)$

$$\widehat{W}_1, \widehat{W}_2 = \min_{W_1, W_2} \sum_{i=1}^N \ell\left(f_{W_2}\left(f_{W_1}(\boldsymbol{x}^{(i)})\right), \boldsymbol{x}^{(i)}\right)$$

• learn using SGD with backpropagation

MLE of latent variable models

• Generative model:

- Observed variables $x \in \mathcal{X}$
- Latent variables $z \in \mathcal{Z}$
- Probabilistic generative model parameterized by parameters Φ is $P_{\Phi}(x,z) = P_{\Phi}(z)P_{\Phi}(x|z)$
 - For each example x, first sample $z \sim P_{\Phi}(z)$, then sample $x \sim P_{\Phi}(x|z)$
 - Note: we never see z, appears only in generative assumption
 - Latent variables allows for easier specification of Pr(x)
- MLE estimation: given dataset $S = \{x^{(i)}: i = 1, 2, ..., N\}$ $\Phi^* = \operatorname{argmax} \sum_{\Phi}^{N} \log \Pr(x^{(i)})$ $\Phi^* = \operatorname{argmax} \sum_{\Phi}^{N} \left(\log \sum_{z \in \mathcal{I}} P_{\Phi}(x^{(i)}, z)\right)$

Expectation Maximization high-level algo

$$\Phi^* = \underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N} \left(\log \sum_{z^{(i)} \in \mathcal{Z}} P_{\Phi}(x^{(i)}, z^{(i)}) \right)$$

- Main idea: Say we are looking at problems where the above optimization is "easy" if we "know" $z^{(i)}$! but we don't know $z^{(i)}$.
 - $_{\circ}~$ Fix-alternate between estimating $z^{(i)}$ and Φ
- Start with some estimate $\Phi^{(0)}$ of parameters we want to estimate:
 - Expectation step (E-step): Compute an expectation to "fill in" missing variables $z^{(i)}$ assuming our current estimate of parameter $\Phi^{(t)}$ is correct.
 - Maximization step (M-step): Assuming our estimates $z^{(i)}$ from above E-step is correct, solve maximization to estimate $\Phi^{(t+1)}$
 - Recall that if we pretend to know $z^{(i)}$, the optimization is "easy"
- No magic! still optimizing hard non-convex function with lots of local optima
 - $_{\circ}~$ not guaranteed to converge to global optima and
 - $_{\circ}~$ but often also give good enough solutions even if they are local optima

EM algorithm

$$\Phi^* = \underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N} \left(\log \sum_{z^{(i)} \in \mathcal{Z}} P_{\Phi}(x^{(i)}, z^{(i)}) \right)$$

- Expectation step (E-step): "fill in" missing variables $z^{(i)}$ assuming our current estimate of $\Phi^{(t)}$ is correct.
- How to do this?
 - Specify an auxiliary model $P_{\Psi}(z|x)$
 - Instead of filling in one value of z this gives a distribution over z | x
 - $_{\odot}\,$ Idea: find a way to estimate Ψ under this model! If the model is correct, we in turn get a good estimate of z

 $ELBO_{\chi}(\Phi, \Psi) = \mathbb{E}_{\mathbf{z} \sim P_{\Psi}(.|\chi)} \log P_{\Phi}(x|z) + D_{KL}(P_{\Psi}(z|x)||P_{\Phi}(z))$

• For any Ψ , $ELBO_{\chi}(\Phi, \Psi) \leq \log(\sum_{z \in \mathbb{Z}} P_{\Phi}(x, z))$ and maximized when $P_{\Psi}(z|x) = P_{\Phi}(z) = \sum_{x \in \mathbb{X}} P_{\Phi}(z, x)$

EM algorithm

$$\Phi^* = \underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N} \left(\log \sum_{z^{(i)} \in \mathcal{Z}} P_{\Phi}(x^{(i)}, z^{(i)}) \right)$$

- Specify joint models $P_{\Phi}(z, x)$ and auxiliary model $P_{\Psi}(z|x)$
- Initialize $\Phi^{(0)}, \Psi^{(0)}$
- For t = 1, 2, ...,
 - $\Psi^{(t)} = \max_{\Psi} ELBO(\Phi^{(t-1)}, \Psi)$
 - $\Phi^{(t)} = \max_{\Phi} ELBO(\Phi, \Psi^{(t)})$

Unsupervised learning – clustering

k-means clustering

- $_{\circ}$ hard clustering
- Initialize cluster centroid
- Alternatingly
 - Compute cluster memberships (hard membershipts)
 - Update cluster centroids
- Gaussian mixture models
 - soft clustering: cluster membership is a probability vector π ∈ Δ^{k−1} over k mixture components and mixture components are Gaussians with means µ₁, µ₂, ..., µ_k
 - EM algorithm alternatingly:
 - Computes soft cluster memberships $\pi^{(t)}$
 - Updates mixture component means $\mu_1^{(t)}$, $\mu_2^{(t)}$, ..., $\mu_k^{(t)}$
- Main modeling in specifying distance or learning representation

Topics not covered

Semi-Supervised Learning Using unlabeled data to help predictions

Slide credit: Nati Srebro

Active Learning

- Training data is randomly drawn/fixed
- What if we could explicitly ask for specific training data?
 - E.g. we could query an expert (a teacher, a user, someone on mechanical turk) about a specific point
- Setting
 - We have a large collection of unlabeled points
 - Can query labels for specific unlabeled examples
 - Each query has a cost associated, so we want to minimize the number of queries
 - Goal is to still learn a mapping from input to some label/output
- How to design the querying system so that we learn good models with smallest amount of data?

Limited/partial Feedback

- Instead of getting correct label, we only know if the prediction was correct or not
- Only know loss/payoff of label/action chosen, not of others
- "Bandit" problems: ad placement, recommendation systems, ...

• New challenge: Exploration vs Exploitation

Slide credit: Nati Srebro

Reinforcement Learning

- Control agent (robot) in environment, only see reward when you get it
- Long term planning to finish a task
 - At time t you are in some (unknown to you) state s_t
 - You choose an action a_t , based on which you move to a new state $s_{t+1} = f(s_t, a_t)$ (maybe with some randomness) and receive reward $r(s_{t+1})$.
 - $_{\circ}~$ You don't know $f(\cdot, \cdot)$ and $r(\cdot)$ (need to learn them)
 - You **only** know the rewards $r(s_t)$ you get, and possibly other limited feedback about the state $o(s_t)$
 - Goal: maximize rewards
- E.g.: mouse moving in a maze
 - State = location and direction
 - Action = move forward, turn left or turn riginternal state
 - Reward = cheese
 - Observation(State) =
 (front wall, left wall, right wall, back wall)

Slide credit: Nati Srebro

Probabilistic Models

- Probabilistic models define models for Pr(x,y) or Pr(x|y) or Pr(y|x)
- We saw some simple examples of this flavor
- More complex models often use many latent variables
 - typically represented as using graphical models such as Bayesian Networks and Markov Random Fields
- Techniques for
 - Modeling : how to represent Pr(x, y) or Pr(x|y) or Pr(y|x)
 - $_{\rm \circ}\,$ Inference : inferring the values of latent variables
 - Learning : prediction
- Many times the optimization problems are non-convex and sometimes even non-computable
 - approximate inference algorithms are very common

Machine Learning Landscape

Convex (= Linear)

- Linear/logistic reg.
- SVMs
- Boosting
- Many other models

Main optimization tools: LP/SDP solvers and SGD

Combinatorial Classes

- Formulas (DNFs)
- Decision trees

Main optimization tools: greedy, combinatorial search (using pruning, genetic programming, simulated annealing, etc)

Non-Parametric

- Nearest-Neighbor
- Parzan Window
- Random walk on example graph

Non-Convex

Neural Networks

 Dictionary and representation learning

Main optimization tools: SGD with tricks

Probabilistic Models

- Fit data to generative model
- Bayes nets, graphical models
- Latent variable models

Typically non-convex, same issues as non-convex models

Slide credit: Nati Srebro

Expert designed \rightarrow data driven

