
Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor:	Suriya	Gunasekar,	TTI	Chicago

29	June	2018

Day	10:	Review

Review

1

2

Supervised	learning	– key	questions

• Data: what	kind	of	data	can	we	
get?	how	much	data	can	we	get?

• Model:	what	is	the	correct	model	
for	my	data?	– want	to	minimize	
the	effort	put	into	this	question!

• Training:	what	resources	-
computation/memory	- does	the	
algorithm	need	to	estimate	the	
model	𝑓"?

• Testing: how	well	will	𝑓" perform	
when	deployed? what	is	the	
computational/memory	
requirement	during	deployment?

𝑓"	 face

Setup

Data
collec,on

Representation

Modeling

Estimation/
training

Model
selection

Da
ta

Al
go
rit
hm

Linear	regression

• Input	𝒙 ∈ 𝒳 ⊂ ℝ),	output	𝑦 ∈ ℝ,	want	to	learn	𝑓:𝒳 → ℝ

• Training	data	𝑆 = 𝒙 𝒊 , 𝑦 1 : 𝑖 = 1,2, … ,𝑁

• Parameterize	candidate	𝑓:𝒳 → ℝ by	linear	functions,	
ℋ = {𝒙 → 𝒘. 𝒙:𝑤 ∈ ℝ)}

• Estimate	𝒘 by	minimizing	loss	on	training	data

𝒘= = argmin
𝒘

	𝐽EFE 𝒘 :=G 𝒘.𝒙 𝒊 − 𝑦 1 I
J

1KL
o 𝐽EFE 𝒘 is	convex	in	𝒘àminimize	𝐽EFE 𝒘 by	setting	gradient	to	0
o 𝛻𝒘𝐽EFE 𝒘 = ∑ 𝒘. 𝒙 𝒊 − 𝑦 1 𝒙 𝒊J

1KL

o Closed	form	solution	𝒘= = 𝑿P𝑿 QL𝑿𝒚

• Can	get	non-linear	functions	by	mapping	𝒙 → 𝜙(𝒙) and	doing	
linear	regression	on	𝜙(𝒙)

3

Overfitting
• For	same	amount	of	data,	
more	complex	models	
(e.g.,	higher	degree	polynomials)		
overfit more

• or	need	more	data	to	fit	more
complex	models

• complexity	≈ number	of	parameters

Model	selection
• m	model	classes	 ℋL,ℋI,… ,ℋW

• 𝑆 = 𝑆XYZ1[∪ 𝑆]Z^ ∪ 𝑆X_`X
• Train on	𝑆XYZ1[to	pick	best	𝑓"Y ∈ ℋY

• Pick	𝑓"∗ based	on	validation	loss	on	𝑆]Z^
• Evaluate	test	loss	𝐿Ecdec 𝑓"

∗

4

reality

Regularization

• Complexity	of	model	class	can	also	be	controlled	by	
norm	of	parameters	– smaller	range	of	values	allowed
• Regularization	for	linear	regression

argmin
𝒘

	𝐽EFE 𝒘 + 𝜆 𝒘 I
I

argmin
𝒘

	𝐽EFE 𝒘 + 𝜆 𝒘 L

• Again	do	model	selection	to	pick	𝜆– using	𝑆]Z^ or	cross-
validation

5

Classification

• Output	𝑦 ∈ 𝒴 takes	discrete	set	of	values,	e.g.,	𝒴 = {0,1} or
𝒴 = {−1,1} or	𝒴 = {𝑠𝑝𝑎𝑚, 𝑛𝑜𝑠𝑝𝑎𝑚}
o Unlike	regression,	label-values	do	not	have	meaning	

• Classifiers	divide	the	space	of	input	𝒳 (often	ℝ))	to	
“regions”	where	each	region	is	assigned	a	label

• Non-parametric	models
o k-nearest	neighbors	– regions	
defined	based	on	nearest	neighbors

o decision	trees	– structured	
rectangular	regions

• Linear	models	– classifier	regions	
are	halfspaces

6

!"

!#

ç

Classification	– logistic	regression

• 𝒳 = ℝ), 	𝒴 = −1,1 , 𝑆 = 𝒙 𝒊 , 𝑦 1 : 𝑖 = 1,2, … , 𝑁

• Linear	model	𝑓 𝒙 = 𝑓𝒘 𝒙 = 𝒘. 𝒙

• Output	classifier	𝑦p 𝒙 = sign(𝒘. 𝒙)

• Empirical	risk	minimization:	

𝒘= 	= argmin
𝒘	

Glog 1 + exp −𝒘. 𝒙 𝒊 𝑦 1 	
�

1

		

• Alternative,	probabilistic	formulation:	

Pr 𝑦 = 1 𝒙 =
1

1 + exp −𝒘. 𝒙
• Multi-class	generalization:	𝒴 = {1,2, … ,𝑚}

Pr 𝑦 𝒙 =
exp −𝒘𝒚. 𝒙

∑ exp −𝒘𝒚y. 𝒙�
zy

• Can	again	get	non-linear	decision	boundaries	by	mapping	𝒙 → 𝜙(𝒙)
7

Logistic	loss	
ℓ 𝑓 𝒙 , 𝑦 = log 1 + exp −𝑓(𝒙)𝑦

ℓ(
#
$
,&
)

0 #($)& →

Classification	– maximum	margin	classifier
Separable	data
• Original	formulation

𝒘= 	= argmax
𝒘∈ℝ|	

				min
1
	
𝑦 1 𝒘. 𝒙 𝒊

𝒘
• Fixing	 𝒘 = 1
𝒘= 	= argmax

𝒘	
				min

1
	𝑦 1 𝒘. 𝒙 𝒊 		s. t. 			 𝒘 = 1

• Fixing	min
1
		𝑦 1 𝒘. 𝒙 𝒊 = 1

𝒘~ 	= argmin
𝒘

	 𝒘 I			s.t.			∀𝑖, 𝑦 1 (𝒘. 𝒙 𝒊) ≥ 1

Slack	variables	for	non-separable	data

𝒘= 	= argmin
𝒘,{����}

	 𝒘 I	+λ	 ∑ 𝜉1�
1 		s.t.			∀𝑖, 𝑦 1 𝒘. 𝒙 𝒊 ≥ 1 − 𝜉1

						= argmin
𝒘,{����}

	 𝒘 I	+λ	 ∑ max 0,1 − 𝑦 1 𝒘. 𝒙 𝒊�
1

8

!′

!

#$

#%

&

10

Kernel	trick
• Using	representor	theorem	𝒘 = ∑ 𝛽1𝒙 𝒊J

1KL

min
𝒘
	 𝒘 I 		+ 𝜆Gmax 0,1 − 𝑦 1 	𝒘. 𝒙 𝒊

�

1

≡ min
𝜷∈ℝ𝑵

	𝜷P𝑮𝜷 + 𝜆Gmax 0,1 − 𝑦 1 𝑮𝜷 1

�

1

𝑮 ∈ ℝJ×J	with	𝐺1� = 𝒙 𝒊 . 𝒙 𝒋 is	called	the	gram	matrix
• Optimization	depends	on	𝒙 𝒊 only	through	𝐺1� = 𝒙 𝒊 . 𝒙 𝒋

• For	prediction	𝒘=. 𝒙 = ∑ 𝛽1�
1 𝒙 𝒊 . 𝒙,	we	again	only	need	𝒙 𝒊 . 𝒙

• Function	𝐾 𝒙, 𝒙� = 𝒙. 𝒙′ is	called	the	Kernel
• When	learning	non-linear	classifiers	using	feature	transformations	𝒙 → 𝜙(𝒙)
and	𝑓𝒘 𝒙 = 𝒘.𝜙(𝒙)

o Classifier	fully	specified	in	terms	of	𝐾� 𝒙, 𝒙� = 𝐾(𝜙 𝒙 , 𝜙(𝒙′))
o 𝜙 𝒙 itself	can	be	very	very	high	dimensional	(maybe	even	infinite	
dimensional)	
à e.g.,	polynomial	kernels,	RBF	kernel

9
9

Optimization
• ERM+regularization	optimization	problem

𝒘= = argmin
𝒘

	𝐽E� 𝒘 :=Gℓ(𝒘.𝜙 𝒙 𝒊 , 𝑦 1)
J

1KL

+ 𝜆‖𝒘‖

• If	𝐽E� 𝒘 is	convex	in	𝒘,	then	𝒘= is	optimum	if	and	only	if gradient	at	𝒘= is	0,	i.e.,		
𝛻𝐽E� 𝒘= = 0	

• Gradient	descent:		start	with	initialization	𝒘𝟎 and	iteratively	update
o 𝒘𝒕�𝟏 = 𝒘𝒕 − 𝜂X𝛻𝐽E� 𝒘𝒕

o where	𝛻𝐽E� 𝒘𝒕 = ∑ 𝛻ℓ 𝒘𝒕. 𝜙 𝒙 𝒊 , 𝑦 1 	�
𝒊 + 𝜆𝛻‖𝒘𝒕‖

• Stochastic	gradient	descent:
o use	gradients	from	only	one	example
o 𝒘𝒕�𝟏 = 𝒘𝒕 − 𝜂X	𝛻� 1 𝐽E� 𝒘𝒕

o where𝛻� 1 𝐽E� 𝒘𝒕 = 𝛻ℓ 𝒘𝒕. 𝜙 𝒙 𝒊 , 𝑦 1 + �
J
𝛻‖𝒘𝒕‖ for	a	random	

sample	(𝒙 𝒊 , 𝑦 1)

10

Other	classification	models
• Optimal	unrestricted	predictor	

o Regression	+	squared	lossà 𝑓∗∗(𝒙) = 𝐄 𝑦 𝒙
o Classification	+	0-1	loss	à 𝑦p∗∗ 𝒙 = argmax� Pr(𝑦 = 𝑐|𝒙)

• Discriminative	models:	directly	model	Pr 𝑦 𝒙 ,	e.g.,	logistic	regression

• Generative	models: model	full	joint	distribution	Pr 𝑦, 𝒙 =
Pr 𝒙|𝑦 Pr(𝑦)

• Why	generative	models?
o One	conditional	might	be	simpler	to	model	with	prior	knowledge,	
e.g.,	compare	specifying	Pr(image|digit = 1) vs	
Pr(digit = 1|image)

o Naturally	handles	missing	data

• Two	examples	of	generative	models
o Naïve	Bayes	classifier	– digit	recognition,	document	classification
o Hidden	Markov	model	– POS	tagging

11

Other	classifiers
• Naïve	Bayes	classifier:	with	d	features	𝑥 = [𝑥L, 𝑥I, … , 𝑥)] where	each
𝑥L, 𝑥I, … , 𝑥) can	take	one	of	K	valuesà 𝐶	𝐾) parameters	

o NB	assumption:	features	are	independent	given	class	𝑦à 𝐶	𝐾	𝑑 params.	

Pr(𝑥L, 𝑥I, … , 𝑥)|𝑦) = Pr(𝑥L|𝑦) Pr(𝑥I|𝑦)…Pr(𝑥)|𝑦) = ∏ Pr(𝑥©|𝑦))
©KL

o Training	amounts	to	averaging	samples	across	classes

• Hidden	Markov	model:	variable	length	input/observations	
{𝑥L, 𝑥I, … , 𝑥W} (e.g.,	words)	and	variable	length	output/state	
{𝑦L, 𝑦I, … , 𝑦W} (e.g.,	tags)

o HMM	assumption:	a)	current	state	conditioned	on	immediate	previous	
state	is	conditionally	independent	of	all	other	variables,	and	(b)	current	
observation	conditioned	on	current	state is	conditionally	independent	of	
all	other	variables.	

Pr(𝑥L, 𝑥I, … , 𝑥W, 𝑦L, 𝑦I, … , 𝑦W) = Pr 𝑦L Pr(𝑥L|𝑦L)ªPr(𝑦©|𝑦©QL) Pr(𝑦©|𝑥©)
W

©KI

o Parameters	estimated	using	MLE	dynamic	programming
12

Feed-Forward	Neural	Networks

𝑣L

𝑣I

𝑣¬

𝑣)
𝑢

𝑣

𝑣®¯X

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣L …𝑣) ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣1 = 𝑥1
• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]

• Pre-activation	 𝑎[𝑣] = ∑ 𝑾[𝑢 → 𝑣]�
¯→]∈² 𝑜[𝑢]

• Output	value	 𝑜 𝑣 = 𝜎(𝑎 𝑣)
• “Output	Unit”	𝑣®¯X ∈ 𝑉,	𝑓 𝒙 = 𝑎 𝑣®¯X

𝑥L

𝑥I

𝑥¬

𝑥)

⋯

𝑓¶ ·,² ,¸,𝑾 𝒙

13Figure	credit:	Nati Srebro

Feed	forward	fully	connected	network

14

• 𝐿	hidden	layers	with	layer	𝑙 havinb	𝑑^ hidden	units
• Parameters:

• for	each	intermediate	layer	𝑾 𝒍 ∈ ℝ)»¼½	×)»	where	𝑑� = 𝑑
• final	layer	weights	𝒘(𝑳�𝟏) ∈ ℝ)¿

• For	2-hidden	layer	𝑓𝑾 𝒙 = 𝒘(𝟑)P𝜎 𝑾 𝟐 𝜎 𝑾 𝟏 𝒙 .	More	generally,	

𝑓𝑾 𝒙 = 𝒘(𝑳�𝟏)P𝜎 𝑾 𝑳Q𝟏 …𝜎 𝑾 𝟐 𝜎 𝑾 𝟏 𝒙

!"
!#
!$

!%
&

!

!'()

*"
*#
*$

*%
⋯

,- . = 0 1 2,#(.)

," . = 5 - 6 .

,# . = 5 - 7 ,"(.)

Back-Propagation
• Efficient	calculation	of	𝛻𝑾ℓ(𝑓𝑾 𝒙 , 𝑦)	using	chain	rule

• Forward	propagation: calculate	activations	𝑎[𝑣] and	outputs	𝑜[𝑣]
• Backward	propagation:	calculate	𝑧[𝑣] ≝ Äℓ Å𝑾 𝒙 ,z

Ä𝒂[]]

• Gradient	descent	update:	using	Äℓ Å𝑾 𝒙 ,z
Ä´ c ¯→]

= 𝑧 𝑣 𝑜 𝑢

𝑾 X�L 𝑢 → 𝑣 = 𝑾 X�L 𝑢 → 𝑣 − 𝜂 X Äℓ Å𝑾 𝒙 ,z
Ä´ c ¯→]

𝑎[𝑣] = G 𝑾(X)[𝑢 → 𝑣]
�

¯→]∈²

𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑧 𝑣®¯X = ℓ′(𝑎 𝑣®¯X , 𝑦)

𝑧 𝑢 = 𝜎′(𝑎 𝑢)G𝑾 𝒕 𝑢 → 𝑣 𝑧[𝑣]	
�

¯→]

!"
!#
!$

!%
&

!

!'()

*"
*#
*$

*%

⋯

,- .,0 ,1,2 3

Optimization	for	NN	training
• Check

o Add	gradCheck()
o Randomly	permute	data	for	SGD	sequence

• Choose	activations	to	avoid
o Gradient	clipping	
o Gradient	explosion

• SGD	“knobs”	in	NN	training	
o Initialization	à Kaiming/Xavier,	or	warm	start	initialization.	
o Step	size/learning	rate	à very	important	to	tune	based	on	training/	validation	loss
o SGD	variants

§ Momentum	for	SGD	à usually	added	with	SGD	(default	parameter	
momentum=0.9	often	works	well)	

§ Adaptive	variants	of	SGD	à common		alternative	to	SGD+momentum is	
Adam	with	𝛽I ≫ 𝛽L, 𝑒. 𝑔. , 𝛽I = 0.999, 𝛽L = 0.9

o Mini-batch	SGD	à ~128 common
o Batch	normalization	à use	batch	normalization

16

Regularization	in	NN
• Explicit	regularization

o Data	augmentation	à Augment	training	data	with	known	
invariances/noise	models	à very	effective
§ think	of	what	is	the	right	data	augmentation	for	your	problem

o Weight	decay	à argmin
𝑾

𝐿E 𝑓𝑾 + �
I
𝑾 I

§ tune	step	sizes/	𝜆	parameter
• Dropout	à Randomly	(temporarily)	remove	𝑝 fraction	of	the	units in	each	
step	of	SGDà usually	very	useful

o Early	stopping		
• Choice	of	architecture	affects	validation	performance/generalization!
• Many	optimization	choices	also	affect	validation	performance—unlike	convex	
optimization	problems	with	a	unique	global	minimum,	where	optimization	
algorithm	only	changes	the	speed/computation	of	training	à Not	well	
understood	phenomenon

o Keep	in	mind	while	making	choices	in	previous	slides

17

NN	architectures	– CNNs	

18Figures	taken	from	lecture	slides	at	http://cs231n.stanford.edu/slides/2017/

NN	architectures	– CNNs	

• Each	convolution	layer	has	input	of	size	𝑊1[×𝐻1[×𝐷1[
• Hyperparameters:	Number	of	filters	𝐷®¯X;	Size	of	filters	𝐾L×𝐾I;
Stride	𝑆; Zero	padding	𝑃
• Parameters:	𝐾L×𝐾I×𝐷1[×𝐷®¯X
• Output:	𝑊®¯X×𝐻®¯X×𝐷®¯X where

o 𝑊®¯X = (𝑊_𝑖𝑛 − 𝐾_1 − 2𝑃)/𝑆 + 1
o 𝐻®¯X = (𝐻_𝑖𝑛 − 𝐾_2 − 2𝑃)/𝑆 + 1

19Figures	taken	from	lecture	slides	at	http://cs231n.stanford.edu/slides/2017/

CNNs

20

• Typical	layers
o Convolution+ReLU
o Max-pooling
o Final	few	fully	connected	
layers

• Common	datasets
o MNIST	(small)
o CIFAR-10	&	CIFAR-100
o ImageNet
o MS	COCO

• Tip:	Try	warm-start	
initialization	from	
models	pre-trained
on	imageNet

Figures	taken	from	lecture	slides	at	http://cs231n.stanford.edu/slides/2017/

Residual	Networks
• ℎ^ = ℎ^QL + 𝑅𝑒𝐿𝑈(Conv(ℎ^QL))
• Avoids	gradient	saturation

• Enabled	training	of	really	deep	networks
o Typical	choice	is	152	layers
o 1000+	layers	have	been	trained	with	
ResNets

• Can	also	extend	for	other	architectures	like	
FCNs/RNNs

21Figures	taken	from	lecture	slides	at	http://cs231n.stanford.edu/slides/2017/

NN	architectures	– RNNs

• Input:	each	example	is	a	sequence	
𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 ∈ ℝ)

• Labels: can	be	single	label	𝒚 or	another	sequence

• Output	of	RNNs:	 ℎL, ℎI, … , ℎ[∈ ℝ)
y

• Note: this	is	just	one	example,	the	training	dataset	will	contain	many	such	
examples

• RNN	model:	For	𝑖 = 1,2, … , 𝑛
𝒉𝒊 = tanh 𝑾𝒙𝒊 + 𝑽𝒉𝒊Q𝟏

22

NN	architectures	– RNNs
• RNN	model:	For	𝑖 = 1,2, … , 𝑛

𝒉𝒊 = tanh 𝑾𝒙𝒊 + 𝑽𝒉𝒊Q𝟏
• 𝒉𝒏 = tanh 𝑾𝒙𝒏 + 𝑽 tanh 𝑾𝒙𝒏Q𝟏 + 𝑉 …+ tanh 𝑾𝒙𝟏 + 𝑽𝒉𝟎

o Like	fully	connected	networks,	but	parameters	are	reused
• loss	ℓ 𝒉𝟏, 𝒉𝟐, … , 𝒉𝒏 , 𝒚

• Can	create	deeper	networks	by	using	 ℎL, ℎI, … , ℎ[∈ ℝ)
y
as	

sequential	input	to	next	layer

23

NN	Architectures	LSTMs

24

NN	Architectures	LSTMs
• Simple	RNNs

• In	LSTMs,	each	time	frame	associated	with	a	complex	cell	

25Figures	taken	from	blog	post	on	LSTMs by	C.	Olah

NN	Architecture	LSTMs
• Cell	state	𝑐X

• Forget	gate	𝑞X

• Input	gate

26

𝒄𝒕Q𝟏	

𝒉𝒕Q𝟏	

• Cell	state	update

• Output	gate

See	lecture	slides	
for	exact	equations

Figures	taken	from	blog	post	on	LSTMs by	C.	Olah

NN	architectures	– encoder-decoder	

• Encoder	RNN:	First	encodes	
in	the	input	and	captures	the	
context	in	𝜉
• Decoder	RNN:	decodes	the	
output	from	𝜉

• Decoder	with	attention:	
instead	of	relying	just	on	final	
context	𝜉,	use	a	linear	
combination	of	all	the	hidden	
states	in	the	encoder
(not	depicted	in	figure)

27

𝜉

See	lecture	slides	
for	exact	equations

Slide	credit:	Greg	Shaknarovich

Ensembles

• Reduce	bias:	
o build	ensemble	of	low-variance,	high-bias	predictors	
sequentially	to	reduce	bias

o AdaBoost:	binary	classication,	exponential	surrogate	loss

• Reduce	variance:	
o build	ensemble	of	high-variance,	low-bias	predictors	in	
parallel and	use	randomness	and	averaging	to	reduce	
variance	

o random	forests,	bagging

• Problems
o Computationally	expensive	(train	and	test	time)
o Often	loose	interpretability

28

Bagging:	Bootstrap	aggregation
Averaging	independent	models	reduces	variance	without	increasing	bias.	
• But	we	don’t	have	independent	datasets!	

o Instead	take	repeated	bootstrap	samples	from	training	set	𝑆
• Bootstrap	sampling:	Given	dataset	𝑆 = 𝑥 1 , 𝑦 1 : 𝑖 = 1,2, … , 𝑁 ,	
create	𝑆� by	drawing	𝑁 examples	at	random	with	replacement	from	𝑆

• Bagging:	
o Create	M	bootstrap	datasets
𝑆L, 𝑆I, … , 𝑆Þ

o Train	distinct	models	𝑓W:𝒳 → 𝒴
by	training	only	on	𝑆W

o Output	final	predictor	
𝐹 𝑥 = L

Þ
∑ 𝑓W 𝑥Þ
WKL (for	regression)	

or	𝐹 𝑥 = majority(𝑓W 𝑥) (for	classification)

29Figure	credit:	David	Sontag

Adaboost

30

Training	data	𝑆 = { 𝑥 1 , 𝑦 1 : 𝑖 = 1,2, … , 𝑁}

• Maintain	weights	𝑊1
X for	each	example	

𝑥 1 , 𝑦 1 ,	initially	all	𝑊1
L = L

J

• For	𝑡 = 1,2, … , T

o Normalize	weights	𝐷1
X = �́

c

∑ �́
c�

�

o Pick	a	classifier	𝑓X	has	better	than	
0.5	weighted	loss
𝜖X = ∑ 𝐷1

X ℓ�L 𝑓X 𝑥 1 , 𝑦 1J
1KL

o Set	𝛼X =
L
I
log LQæc

æc
o Update	weights	
𝑊1

X�L = 𝑊1
X exp −𝛼X𝑦 1 𝑓X 𝑥 1

• Output	strong	classifier	𝐹ç 𝑥 = sign ∑ 𝛼X𝑓X 𝑥�
X

Example	credit:	Greg	Shaknarovich

Adaboost

31

Training	data	𝑆 = { 𝑥 1 , 𝑦 1 : 𝑖 = 1,2, … , 𝑁}

• Maintain	weights	𝑊1
X for	each	example	

𝑥 1 , 𝑦 1 ,	initially	all	𝑊1
L = L

J

• For	𝑡 = 1,2, … , T

o Normalize	weights	𝐷1
X = �́

c

∑ �́
c�

�

o Pick	a	classifier	𝑓X	has	better	than	
0.5	weighted	loss
𝜖X = ∑ 𝐷1

X ℓ�L 𝑓X 𝑥 1 , 𝑦 1J
1KL

o Set	𝛼X =
L
I
log LQæc

æc
o Update	weights	
𝑊1

X�L = 𝑊1
X exp −𝛼X𝑦 1 𝑓X 𝑥 1

• Output	strong	classifier	𝐹ç 𝑥 = sign ∑ 𝛼X𝑓X 𝑥�
X

Example	credit:	Greg	Shaknarovich

Supervised	learning	summary
• Linear	regression
• Classification

o Logistic	regression
o Maximum	margin	classifiers,	kernel	trick
o Generative	models:	Naïve	Bayes,	HMMs
o Neural	networks	

• Ensemble	methods
• Main	concepts:

o Detecting	and	avoiding	overfitting	and	the	tradeoff	between	
bias	and	complexity

o Learning	parameters	using	empirical	risk	minimization	(ERM)	
plus	regularization

o Optimization	techniques:	specially	(stochastic)	gradient	
descentà for	both	convex	and	non-convex	problems

32

Unsupervised	learning
• Unsupervised	learning:	
Requires	data	𝑥 ∈ 𝒳,	but	no	
labels	
• Goal?:	Compact	
representation	of	the	data	by	
detecting	patterns
o e.g.	Group	emails	by	topic

• Useful	when	we	don’t	know	
what	we	are	looking	for	
o makes	evaluation	tricky

• Applications	in	visualization,	
exploratory	data	analysis,	
semi-supervised	learning

33Figure	credit:	David	Sontag

Linear	dimensionality	reduction

• Problem: Given	high	dimensional	feature	𝒙 = 𝑥L, 𝑥I, … , 𝑥) ∈ ℝ)
find	transformations	𝑧 𝒙 = 𝑧L 𝒙 , 𝑧I 𝒙 , … , 𝑧© 𝒙 ∈ ℝ©
so	that	“almost	all	useful	information”	about	𝒙 is	retained	in	𝑧 𝒙

o Learn	𝑧 𝒙 	from	dataset	of	examples	𝑆 = 𝒙 𝒊 ∈ ℝ): 𝑖 = 1,2, … , 𝑁

• Linear	dimensionality	reduction:	𝑧 𝒙 restricted	to	be	a	linear	function

• PCA: given	data	𝑥 ∈ ℝ),	find	U ∈ ℝ©×) to	minimize	

min
é
G	 𝑼P𝑼𝒙 𝒊 − 𝒙 𝒊

I
I

�

1

		𝑠. 𝑡. 		𝑼𝑼P = 𝑰	

o solution	given	by	eigenvalue	decomposition	of	Σ�íí =
L
J
∑ 𝒙 𝒊 𝒙 𝒊 PJ
1KL

o finds	directions	of	maximum	variation	in	data
o check:	make	sure	to	center	the	data	so	that	each	feature	has	zero	mean

• Can	get	non-linear	embedding	by	doing	PCA	on	𝜙(𝒙)à Kernel	PCA

34

Non	linear	dimensionality	reduction

• Isomap: Neighborhood	of	points	represented	using	the	kNN-graph	with	
weights	proportional	to	distance	between	the	points

o geodesic	distance	𝑑 𝑥, 𝑥� = length	of	shortest	path	in	the	graph
o Use	any	shortest	path	algorithm	can	be	used	to	construct	a	matrix	𝑀 ∈
ℝJ×J with	𝑀1� = 𝑑 𝑥 1 , 𝑥(�) for	all	𝑥 1 , 𝑥(�) ∈ 𝑆

o MDS: Find	a	(low	dimensional)	embedding	𝑧(𝑥) of	𝑥 so	that	geodesic	
distance	match	the	Euclidean	distance	in	the	transformed	space

min
ï
∑ 𝑧 𝑥 1 − 𝑧 𝑥 � − 𝑀1�

I�
1,�∈ J

• Works	well	for	small	scale	problems

35

Non	linear	dimensionality	reduction

• Autoencoders:

• 𝜙 𝑥 = 𝑓𝑾𝟏 𝒙
• 𝒙~ = 𝑓𝑾𝟐 𝜙(𝒙)
• some	loss	ℓ 𝑥ð, 𝑥

𝑊ñL,𝑊ñI = min
½́, ò́

Gℓ 𝑓𝑾𝟐 𝑓𝑾𝟏 𝒙
1 , 𝒙 1

J

1KL

• learn	using	SGD	with	backpropagation

36

𝑣L

𝑣I

𝑣¬

𝜙 𝑥 L

𝜙 𝑥 ©

𝑥L

𝑥I

𝑥)

⋯ ⋯⋯
𝑥ðL

𝑥ðI

𝑥ð)

⋯

⋯

MLE	of	latent	variable	models

• Generative	model:
o Observed	variables	𝑥 ∈ 𝒳
o Latent	variables	𝑧 ∈ 𝒵
o Probabilistic	generative	model	parameterized	by	parameters	Φ is	

𝑃õ 𝑥, 𝑧 = 𝑃õ 𝑧 𝑃õ 𝑥 𝑧
§ For	each	example	𝑥,	first	sample	𝑧 ∼ 𝑃õ 𝑧 ,	then	sample	x ∼
𝑃õ 𝑥 𝑧

§ Note:	we	never	see	𝑧,	appears	only	in	generative	assumption
§ Latent	variables	allows	for	easier	specification	of	Pr(𝑥)

• MLE	estimation: given	dataset	𝑆 = 𝑥 1 : 𝑖 = 1,2, … ,𝑁

Φ∗ = argmax
õ

Glog Pr 𝑥 1
J

1KL

Φ∗ = argmax
õ

G logG𝑃õ 𝑥 1 , 𝑧
�

÷∈𝒵

J

1KL 37

Expectation	Maximization	high-level	algo

Φ∗ = argmax
õ

G log G 𝑃õ 𝑥 1 , 𝑧 1
�

÷ � ∈𝒵

J

1KL

• Main	idea:	Say	we	are	looking	at	problems	where	the	above	optimization	is	
“easy”	if	we	“know”	𝑧 1 !	but	we	don’t	know	𝑧 1 .	

o Fix-alternate	between	estimating	𝑧 1 and	Φ
• Start	with	some	estimate	Φ � of	parameters	we	want	to	estimate:	

o Expectation	step	(E-step):	Compute	an	expectation to	“fill	in”	missing	
variables	𝑧 1 assuming	our	current	estimate	of	parameter	Φ X is	correct.

o Maximization	step	(M-step): Assuming	our	estimates	𝑧 1 	 from	above	E-
step	is	correct,	solve	maximization to	estimate	Φ X�L

§ Recall	that	if	we	pretend	to	know	𝑧 1 ,	the	optimization	is	“easy”
• No	magic!	still	optimizing	hard	non-convex	function	with	lots	of	local	optima	

o not	guaranteed	to	converge	to	global	optima	and
o but	often	also	give	good	enough	solutions	even	if	they	are	local	optima

38

EM	algorithm

Φ∗ = argmax
õ

G log G 𝑃õ 𝑥 1 , 𝑧 1
�

÷ � ∈𝒵

J

1KL

• Expectation	step	(E-step):	“fill	in”	missing	variables	𝑧 1 assuming	our	
current	estimate	of	Φ X is	correct.

• How	to	do	this?
o Specify	an	auxiliary	model	𝑃ø(𝑧|𝑥)
o Instead	of	filling	in	one	value	of	𝑧 this	gives	a	distribution	over	𝑧|𝑥
o Idea:	find	a	way	to	estimate	Ψ under	this	model!	If	the	model	is	correct,	
we	in	turn	get	a	good	estimate	of	𝑧

𝐸𝐿𝐵𝑂í Φ,Ψ = 𝔼𝒛∼ÿ! . 𝑥 log 𝑃õ 𝑥|𝑧 + 𝐷"F 𝑃ø 𝑧 𝑥 ||𝑃õ 𝑧

• For	any	Ψ,	𝐸𝐿𝐵𝑂í Φ,Ψ ≤ log ∑ 𝑃õ 𝑥, 𝑧�
÷∈𝒵 and	maximized	when	

𝑃ø 𝑧 𝑥 = 𝑃õ 𝑧 = ∑ 𝑃õ(𝑧, 𝑥)�
í∈𝒳

39

EM	algorithm

Φ∗ = argmax
õ

G log G 𝑃õ 𝑥 1 , 𝑧 1
�

÷ � ∈𝒵

J

1KL

• Specify	joint	models	𝑃õ(𝑧, 𝑥) and	auxiliary	model	𝑃ø 𝑧 𝑥

• Initialize	Φ(�), Ψ �

• For	𝑡 = 1,2, … ,

• Ψ X = max
ø
	𝐸𝐿𝐵𝑂(Φ XQL , Ψ)

• Φ X = max
õ
	𝐸𝐿𝐵𝑂 Φ,Ψ X

40

Unsupervised	learning	– clustering	
• k-means	clustering

o hard	clustering
o Initialize	cluster	centroid
o Alternatingly

§ Compute	cluster	memberships	(hard	membershipts)
§ Update	cluster	centroids

• Gaussian	mixture	models
o soft	clustering:	cluster	membership	is	a	probability	vector	𝜋 ∈
Δ©QL over	𝑘 mixture	components and	mixture	components	
are	Gaussians	with	means	𝜇L, 𝜇I, … , 𝜇©

o EM	algorithm	alternatingly:
§ Computes	soft	cluster	memberships	𝜋 (

§ Updates	mixture	component	means	𝜇L
X , 𝜇I

X , … , 𝜇©
X

• Main	modeling	in	specifying	distance	or	learning	
representation

41

Topics not covered

42

A ?

B

Semi-Supervised	Learning
Using	unlabeled	data	to	help	predictions

Slide	credit:	Nati Srebro

Active	Learning

• Training	data	is	randomly	drawn/fixed
• What	if	we	could	explicitly	ask	for	specific	training	data?

o E.g.	we	could	query	an	expert	(a	teacher,	a	user,	someone	on	
mechanical	turk)	about	a	specific	point

• Setting
o We	have	a	large	collection	of	unlabeled	points
o Can	query	labels	for	specific	unlabeled	examples
o Each	query	has	a	cost	associated,	so	we	want	to	minimize	the	
number	of	queries

o Goal	is	to	still	learn	a	mapping	from	input	to	some	
label/output

• How	to	design	the	querying	system	so	that	we	learn	good	models	with	
smallest	amount	of	data?

Limited/partial	Feedback

• Instead	of	getting	correct	label,	we	only	know	if	the	prediction	
was	correct	or	not

• Only	know	loss/payoff	of	label/action	chosen,	not	of	others
• “Bandit”	problems: ad	placement,	recommendation	systems,	…

• New	challenge:	Exploration	vs	Exploitation

Slide	credit:	Nati Srebro

Reinforcement	Learning
• Control	agent	(robot)	in	environment,	only	see	reward	when	you	get	it

• Long	term	planning	to	finish	a	task
o At	time	𝑡 you	are	in	some	(unknown	to	you)	state	𝑠X
o You	choose	an	action	𝑎X,	based	on	which	you	move	to	a	new	state	𝑠X�L =
𝑓(𝑠X, 𝑎X) (maybe	with	some	randomness)	and	receive	reward	𝑟 𝑠X�L .

o You	don’t	know	𝑓(⋅,⋅) and	𝑟(⋅) (need	to	learn	them)
o You	only know	the	rewards	𝑟(𝑠X) you	get,	and	possibly	other	limited	feedback	
about	the	state	𝑜(𝑠X)

o Goal:	maximize	rewards

• E.g.:	mouse	moving	in	a	maze
o State	=	location	and	direction
o Action	=	move	forward,	turn	left	or	turn	right
o Reward	=	cheese
o Observation(State)	=
(front	wall,	left	wall,	right	wall,	back	wall)

Slide	credit:	Nati Srebro

Probabilistic	Models

• Probabilistic	models	define	models	for	
Pr(𝑥, 𝑦) 	𝑜𝑟 Pr 𝑥 𝑦 𝑜𝑟 Pr(𝑦|𝑥)
• We	saw	some	simple	examples	of	this	flavor
• More	complex	models	often	use	many	latent	variables

o typically	represented	as	using	graphical	models	such	as	
Bayesian	Networks	and	Markov	Random	Fields

• Techniques	for	
o Modeling	:	how	to	represent	Pr(𝑥, 𝑦) 	𝑜𝑟 Pr 𝑥 𝑦 𝑜𝑟 Pr(𝑦|𝑥)
o Inference	:	inferring	the	values	of	latent	variables
o Learning	:	prediction

• Many	times	the	optimization	problems	are	non-convex	
and	sometimes	even	non-computable	
o approximate	inference	algorithms	are	very	common

Machine	Learning	Landscape

Convex	(=	Linear)

• Linear/logistic	reg.
• SVMs
• Boosting
• Many	other	models

Main	optimization	tools:	
LP/SDP	solvers	and	SGD

Combinatorial	Classes

• Formulas	(DNFs)
• Decision	trees

Main	optimization	tools:	greedy,	
combinatorial	search	(using	
pruning,	genetic	programming,	
simulated	annealing,	etc)

Non-Parametric

• Nearest-Neighbor
• Parzan Window
• Random	walk	on	

example	graph

Non-Convex

• Neural	Networks
• Dictionary	and	

representation	learning

Main	optimization	tools:	SGD	
with	tricks

Probabilistic	Models

• Fit	data	to	generative	model
• Bayes	nets,	graphical	models
• Latent	variable	models

Typically	non-convex,	same	issues	as	
non-convex	models

Slide	credit:	Nati Srebro

49

Expert	designed	à data	driven

Expert	
designed	
systems

Just	dump	all	
data	into	the	
machine

machine	learning

C.	M.	Bishop:	“…a	training	
set	is	used	to	tune	the	

parameters	of	an	adaptive	
model”

