Day 10: Review

Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

29 June 2018

Review

Supervised learning - key questions

- Data: what kind of data can we get? how much data can we get?
- Model: what is the correct model for my data? - want to minimize the effort put into this question!
- Training: what resources computation/memory - does the algorithm need to estimate the model \hat{f} ?
- Testing: how well will \hat{f} perform when deployed? what is the computational/memory requirement during deployment?

Linear regression

- Input $x \in \mathcal{X} \subset \mathbb{R}^{d}$, output $y \in \mathbb{R}$, want to learn $f: \mathcal{X} \rightarrow \mathbb{R}$
- Training data $S=\left\{\left(x^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}$
- Parameterize candidate $f: \mathcal{X} \rightarrow \mathbb{R}$ by linear functions,

$$
\mathcal{H}=\left\{x \rightarrow w \cdot x: w \in \mathbb{R}^{d}\right\}
$$

- Estimate \boldsymbol{w} by minimizing loss on training data

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{L S}(\boldsymbol{w}):=\sum_{i=1}^{N}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}-y^{(i)}\right)^{2}
$$

- $\int_{S}^{L S}(\boldsymbol{w})$ is convex in $\boldsymbol{w} \rightarrow$ minimize $\int_{S}^{L S}(\boldsymbol{w})$ by setting gradient to 0
- $\nabla_{w} J_{S}^{L S}(w)=\sum_{i=1}^{N}\left(w . x^{(i)}-y^{(i)}\right) x^{(i)}$
- Closed form solution $\widehat{w}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X} \boldsymbol{y}$
- Can get non-linear functions by mapping $\boldsymbol{x} \rightarrow \boldsymbol{\phi}(\boldsymbol{x})$ and doing linear regression on $\phi(\boldsymbol{x})$

Overfitting

- For same amount of data, more complex models (e.g., higher degree polynomials) overfit more
- or need more data to fit more complex models

- complexity \approx number of parameters

Model selection

- m model classes $\left\{\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{m}\right\}$
- $S=S_{\text {train }} \cup S_{\text {val }} \cup S_{\text {test }}$
- Train on $S_{\text {train }}$ to pick best $\hat{f}_{r} \in \mathcal{H}_{r}$
- Pick \hat{f}^{*} based on validation loss on $S_{v a l}$
- Evaluate test loss $L_{S_{\text {test }}}\left(\hat{f}^{*}\right)$

Regularization

- Complexity of model class can also be controlled by norm of parameters - smaller range of values allowed
- Regularization for linear regression

$$
\begin{aligned}
& \underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{L S}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{L S}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{1}
\end{aligned}
$$

- Again do model selection to pick λ - using $S_{v a l}$ or crossvalidation

Classification

- Output $y \in \mathcal{Y}$ takes discrete set of values, e.g., $\mathcal{Y}=\{0,1\}$ or $\mathcal{Y}=\{-1,1\}$ or $\mathcal{Y}=\{$ spam, nospam $\}$
- Unlike regression, label-values do not have meaning
- Classifiers divide the space of input \mathcal{X} (often \mathbb{R}^{d}) to "regions" where each region is assigned a label
- Non-parametric models
- k-nearest neighbors - regions defined based on nearest neighbors
- decision trees - structured rectangular regions
- Linear models - classifier regions are halfspaces

Classification - logistic regression

$$
\begin{gathered}
\text { Logistic loss } \\
\ell(f(\boldsymbol{x}), y)=\log (1+\exp (-f(\boldsymbol{x}) y))
\end{gathered}
$$

- $\mathcal{X}=\mathbb{R}^{d}, \quad \mathcal{Y}=\{-1,1\}, S=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}$
- Linear model $f(x)=f_{w}(x)=w \cdot x$

- Output classifier $\hat{y}(\boldsymbol{x})=\operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x})$

- Empirical risk minimization:

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i} \log \left(1+\exp \left(-\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} y^{(i)}\right)\right)
$$

- Alternative, probabilistic formulation:

$$
\operatorname{Pr}(y=1 \mid \boldsymbol{x})=\frac{1}{1+\exp (-\boldsymbol{w} \cdot \boldsymbol{x})}
$$

- Multi-class generalization: $\mathcal{Y}=\{1,2, \ldots, m\}$

$$
\operatorname{Pr}(y \mid \boldsymbol{x})=\frac{\exp \left(-\boldsymbol{w}_{\boldsymbol{y}} \cdot \boldsymbol{x}\right)}{\sum_{y^{\prime}} \exp \left(-\boldsymbol{w}_{\boldsymbol{y}^{\prime}} \cdot \boldsymbol{x}\right)}
$$

- Can again get non-linear decision boundaries by mapping $\boldsymbol{x} \rightarrow \phi(\boldsymbol{x})$

Classification - maximum margin classifier

Separable data

- Original formulation
$\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\operatorname{argmax}} \min _{i} \frac{y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}}{\|\boldsymbol{w}\|}$
- Fixing $\|w\|=1$
$\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmax}} \min _{i} y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)$ s.t. $\|\boldsymbol{w}\|=1$
- Fixing $\min _{i} y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}=1$

$\widetilde{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2}$ s.t. $\forall i, y^{(i)}\left(\boldsymbol{w} . \boldsymbol{x}^{(i)}\right) \geq 1$
Slack variables for non-separable data

$$
\begin{aligned}
\widehat{\boldsymbol{w}} & =\underset{\boldsymbol{w},\left\{\xi_{i} \geq 0\right\}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2}+\lambda \sum_{i} \xi_{i} \text { s.t. } \forall i, y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right) \geq 1-\xi_{i} \\
& =\underset{\boldsymbol{w},\left\{\xi_{i} \geq 0\right\}}{\operatorname{argmin}}\|\boldsymbol{w}\|^{2}+\lambda \sum_{i} \max \left(0,1-y^{(i)}\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)\right)
\end{aligned}
$$

Kernel trick

- Using representor theorem $\boldsymbol{w}=\sum_{i=1}^{N} \beta_{i} \boldsymbol{x}^{(i)}$

$$
\begin{aligned}
& \min _{w}\|\boldsymbol{w}\|^{2}+\lambda \sum_{i} \max \left(0,1-y^{(i)} \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right) \\
& \equiv \min _{\beta \in \mathbb{R}^{N}} \boldsymbol{\beta}^{\top} \boldsymbol{G} \boldsymbol{\beta}+\lambda \sum_{i} \max \left(0,1-y^{(i)}(\boldsymbol{G} \boldsymbol{\beta})_{i}\right)
\end{aligned}
$$

$G \in \mathbb{R}^{N \times N}$ with $G_{i j}=x^{(i)} . x^{(j)}$ is called the gram matrix

- Optimization depends on $x^{(i)}$ only through $G_{i j}=x^{(i)} . x^{(j)}$
- For prediction $\widehat{\boldsymbol{w}} \cdot \boldsymbol{x}=\sum_{i} \beta_{i} \boldsymbol{x}^{(i)}, \boldsymbol{x}$, we again only need $\boldsymbol{x}^{(i)} . \boldsymbol{x}$
- Function $K\left(x, x^{\prime}\right)=\boldsymbol{x} \cdot \boldsymbol{x}^{\prime}$ is called the Kernel
- When learning non-linear classifiers using feature transformations $x \rightarrow \phi(x)$ and $f_{\boldsymbol{w}}(\boldsymbol{x})=\boldsymbol{w} \cdot \phi(\boldsymbol{x})$
- Classifier fully specified in terms of $K_{\phi}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=K\left(\phi(\boldsymbol{x}), \phi\left(\boldsymbol{x}^{\prime}\right)\right)$
- $\phi(\boldsymbol{x})$ itself can be very very high dimensional (maybe even infinite dimensional)
\rightarrow e.g., polynomial kernels, RBF kernel

Optimization

- ERM+regularization optimization problem

$$
\widehat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmin}} J_{S}^{\lambda}(\boldsymbol{w}):=\sum_{i=1}^{N} \ell\left(\boldsymbol{w} \cdot \boldsymbol{\phi}\left(\boldsymbol{x}^{(i)}\right), y^{(i)}\right)+\lambda\|\boldsymbol{w}\|
$$

- If $J_{S}^{\lambda}(\boldsymbol{w})$ is convex in \boldsymbol{w}, then $\widehat{\boldsymbol{w}}$ is optimum if and only if gradient at $\widehat{\boldsymbol{w}}$ is 0 , i.e., $\nabla J_{S}^{\lambda}(\widehat{w})=0$
- Gradient descent: start with initialization $\boldsymbol{w}^{\mathbf{0}}$ and iteratively update

。 $\boldsymbol{w}^{t+1}=\boldsymbol{w}^{t}-\eta^{t} \nabla J_{S}^{\lambda}\left(\boldsymbol{w}^{t}\right)$

- where $\nabla J_{S}^{\lambda}\left(\boldsymbol{w}^{t}\right)=\sum_{i} \nabla \ell\left(\boldsymbol{w}^{t} . \phi\left(\boldsymbol{x}^{(i)}\right), y^{(i)}\right)+\lambda \nabla\left\|\boldsymbol{w}^{t}\right\|$
- Stochastic gradient descent:
- use gradients from only one example
- $\boldsymbol{w}^{\boldsymbol{t + 1}}=\boldsymbol{w}^{\boldsymbol{t}}-\eta^{t} \hat{\nabla}^{(i)} J_{S}^{\lambda}\left(\boldsymbol{w}^{t}\right)$
- where $\hat{\nabla}^{(i)} J_{S}^{\lambda}\left(\boldsymbol{w}^{t}\right)=\nabla \ell\left(\boldsymbol{w}^{t} . \phi\left(\boldsymbol{x}^{(i)}\right), y^{(i)}\right)+\frac{\lambda}{N} \nabla\left\|\boldsymbol{w}^{t}\right\|$ for a random sample $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$

Other classification models

- Optimal unrestricted predictor
- Regression + squared loss $\rightarrow f^{* *}(\boldsymbol{x})=\mathbf{E}[y \mid x]$
- Classification $+0-1$ loss $\rightarrow \hat{y}^{* *}(\boldsymbol{x})=\operatorname{argmax}_{c} \operatorname{Pr}(y=c \mid \boldsymbol{x})$
- Discriminative models: directly model $\operatorname{Pr}(y \mid x)$, e.g., logistic regression
- Generative models: model full joint distribution $\operatorname{Pr}(y, x)=$ $\operatorname{Pr}(\boldsymbol{x} \mid y) \operatorname{Pr}(y)$
- Why generative models?
- One conditional might be simpler to model with prior knowledge, e.g., compare specifying Pr (image|digit $=1$) vs $\operatorname{Pr}($ digit $=1 \mid$ image $)$
- Naturally handles missing data
- Two examples of generative models
- Naïve Bayes classifier - digit recognition, document classification
- Hidden Markov model - POS tagging

Other classifiers

- Naïve Bayes classifier: with d features $x=\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ where each $x_{1}, x_{2}, \ldots, x_{d}$ can take one of K values $\rightarrow C K^{d}$ parameters
- NB assumption: features are independent given class $y \rightarrow C K d$ params.

$$
\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{d} \mid y\right)=\operatorname{Pr}\left(x_{1} \mid y\right) \operatorname{Pr}\left(x_{2} \mid y\right) \ldots \operatorname{Pr}\left(x_{d} \mid y\right)=\prod_{k=1}^{d} \operatorname{Pr}\left(x_{k} \mid y\right)
$$

- Training amounts to averaging samples across classes
- Hidden Markov model: variable length input/observations $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ (e.g., words) and variable length output/state $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ (e.g., tags)
- HMM assumption: a) current state conditioned on immediate previous state is conditionally independent of all other variables, and (b) current observation conditioned on current state is conditionally independent of all other variables.

$$
\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}\right)=\operatorname{Pr}\left(y_{1}\right) \operatorname{Pr}\left(x_{1} \mid y_{1}\right) \prod_{k=2}^{m} \operatorname{Pr}\left(y_{k} \mid y_{k-1}\right) \operatorname{Pr}\left(y_{k} \mid x_{k}\right)
$$

- Parameters estimated using MLE dynamic programming

Feed-Forward Neural Networks

Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V .
- "Input Units" $v_{1} \ldots v_{d} \in V$: no incoming edges have value $o\left[v_{i}\right]=x_{i}$
- Each edge $u \rightarrow v$ has weight $W\lceil u \rightarrow v\rceil$
- Pre-activation $a[v]=\sum_{u \rightarrow v \in E} W[u \rightarrow v] o[u]$
- Output value $o[v]=\sigma(a[v])$
- "Output Unit" $v_{\text {out }} \in V, f_{W}(\boldsymbol{x})=a\left[v_{\text {out }}\right]$

Feed forward fully connected network

- L hidden layers with layer l havinb d_{l} hidden units
- Parameters:
- for each intermediate layer $\boldsymbol{W}^{(l)} \in \mathbb{R}^{d_{l-1} \times d_{l}}$ where $d_{0}=d$
- final layer weights $\boldsymbol{w}^{(L+1)} \in \mathbb{R}^{d_{L}}$
- For 2-hidden layer $f_{\boldsymbol{W}}(\boldsymbol{x})=\boldsymbol{w}^{(3)^{\top}} \sigma\left(\boldsymbol{W}^{(2)} \sigma\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)$. More generally,

$$
f_{W}(\boldsymbol{x})=\boldsymbol{w}^{(L+1)^{\top}} \sigma\left(\boldsymbol{W}^{(L-1)} \ldots \sigma\left(\boldsymbol{W}^{(2)} \sigma\left(\boldsymbol{W}^{(\mathbf{1})} \boldsymbol{x}\right)\right)\right)
$$

Back-Propagation

- Efficient calculation of $\nabla_{W} \ell\left(f_{W}(\boldsymbol{x}), y\right)$ using chain rule

$$
\begin{gathered}
a[v]=\sum_{u \rightarrow v \in E} \boldsymbol{W}^{(t)}[u \rightarrow v] o[u] \\
o[v]=\sigma(a[v]) \\
z\left[v_{\text {out }}\right]=\ell^{\prime}\left(a\left[v_{\text {out }}\right], y\right) \\
z[u]=\sigma^{\prime}(a[u]) \sum_{u \rightarrow v} \boldsymbol{W}^{(t)}[u \rightarrow v] z[v]
\end{gathered}
$$

- Forward propagation: calculate activations $a[v]$ and outputs $o[v]$
- Backward propagation: calculate $z[v] \stackrel{\text { def }}{=} \frac{\partial \ell\left(f_{W}(x), y\right)}{\partial a[v]}$
- Gradient descent update: using $\frac{\partial \ell\left(f_{W}(x), y\right)}{\partial W^{(t)}[u \rightarrow v]}=z[v] o[u]$

$$
\boldsymbol{W}^{(t+1)}[u \rightarrow v]=\boldsymbol{W}^{(t+1)}[u \rightarrow v]-\eta^{(t)} \frac{\partial \ell\left(f_{W}(x), y\right)}{\partial W^{(t)}[u \rightarrow v]}
$$

Optimization for NN training

- Check
- Add gradCheck()
- Randomly permute data for SGD sequence
- Choose activations to avoid
- Gradient clipping
- Gradient explosion
- SGD "knobs" in NN training
- Initialization \rightarrow Kaiming/Xavier, or warm start initialization.
- Step size/learning rate \rightarrow very important to tune based on training/ validation loss
- SGD variants
- Momentum for SGD \rightarrow usually added with SGD (default parameter momentum=0.9 often works well)
- Adaptive variants of SGD \rightarrow common alternative to SGD+momentum is Adam with $\beta_{2} \gg \beta_{1}$, e.g., $\beta_{2}=0.999, \beta_{1}=0.9$
- Mini-batch SGD $\rightarrow \sim 128$ common
- Batch normalization \rightarrow use batch normalization

Regularization in NN

- Explicit regularization
- Data augmentation \rightarrow Augment training data with known invariances/noise models \rightarrow very effective
- think of what is the right data augmentation for your problem
- Weight decay $\rightarrow \arg \min _{W} L_{S}\left(f_{W}\right)+\frac{\lambda}{2}\|\boldsymbol{W}\|^{2}$
- tune step sizes/ λ parameter
- Dropout \rightarrow Randomly (temporarily) remove p fraction of the units in each step of SGD \rightarrow usually very useful
- Early stopping
- Choice of architecture affects validation performance/generalization!
- Many optimization choices also affect validation performance—unlike convex optimization problems with a unique global minimum, where optimization algorithm only changes the speed/computation of training \rightarrow Not well understood phenomenon
- Keep in mind while making choices in previous slides

NN architectures - CNNs

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

NN architectures - CNNs

- Each convolution layer has input of size $W_{i n} \times H_{\text {in }} \times D_{\text {in }}$
- Hyperparameters: Number of filters $D_{\text {out }}$; Size of filters $K_{1} \times K_{2}$; Stride S; Zero padding P
- Parameters: $K_{1} \times K_{2} \times D_{\text {in }} \times D_{\text {out }}$
- Output: $W_{\text {out }} \times H_{\text {out }} \times D_{\text {out }}$ where
- $W_{\text {out }}=\left(W_{-}\right.$in $\left.-K_{-} 1-2 P\right) / S+1$
- $H_{\text {out }}=\left(H_{-}\right.$in $\left.-K_{-} 2-2 P\right) / S+1$

CNNs

- Typical layers
- Convolution+ReLU
- Max-pooling
- Final few fully connected layers
- Common datasets
- MNIST (small)
- CIFAR-10 \& CIFAR-100
- ImageNet
- MS COCO
- Tip: Try warm-start initialization from models pre-trained on imageNet

		Eontina
		FC. 1000
	Sontina	FC4085
tob	FC, 1000	RC4(is)
tat	FCi4088	Paod
tos	FCA 408	3alcorv, b12
	Fow	30canv, 512
conve-3	. $380 \mathrm{carn}, 512$	\$30 carv, 512
conve-2	300 canv, 512	Ftacorn, bia
conve-1	Tacanv, bia	Prim
	Prad	Sxacany, 512
conves	30aconv, 512	S3300nc. 612
conve2	S30 canv, 512	S33006, 612
convel	Sayemu. 512	-3000anv, 512
	Pad	Prad
conve-2		53000n, 288
convel 1	S30 canvizat	\% 30000 ch , 888
	Prad	Paid
conve-2		
convel 1	[30 canv, 123	
	Poud	Pray
convi-2	3xacan 84	Beamer ${ }^{\text {a }}$
convi-1	3 Ba anv, 84	
	Iram	Iram
	VGG16	VGG19

Residual Networks

- $h_{l}=h_{l-1}+\operatorname{ReLU}\left(\operatorname{Conv}\left(h_{l-1}\right)\right)$
- Avoids gradient saturation
- Enabled training of really deep networks
- Typical choice is 152 layers
- 1000+ layers have been trained with ResNets
- Can also extend for other architectures like FCNs/RNNs

Research

Total depths of $34,50,101$, or 152 layers for ImageNet

NN architectures - RNNs

- Input: each example is a sequence

$$
\left[x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}\right]
$$

- Labels: can be single label \boldsymbol{y} or another sequence
- Output of RNNs: $\left[h_{1}, h_{2}, \ldots, h_{n} \in \mathbb{R}^{d^{\prime}}\right]$
- Note: this is just one example, the training dataset will contain many such examples
- RNN model: For $i=1,2, \ldots, n$

$$
\boldsymbol{h}_{\boldsymbol{i}}=\tanh \left(\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{V} \boldsymbol{h}_{\boldsymbol{i}-\mathbf{1}}\right)
$$

NN architectures - RNNs

- RNN model: For $i=1,2, \ldots, n$

$$
\boldsymbol{h}_{\boldsymbol{i}}=\tanh \left(\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{V} \boldsymbol{h}_{\boldsymbol{i}-\mathbf{1}}\right)
$$

- $\boldsymbol{h}_{\boldsymbol{n}}=\tanh \left(\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{n}}+\boldsymbol{V} \tanh \left(\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{n}-\mathbf{1}}+V\left(\ldots+\tanh \left(\boldsymbol{W} \boldsymbol{x}_{\mathbf{1}}+\boldsymbol{V} \boldsymbol{h}_{\mathbf{0}}\right)\right)\right)\right)$
- Like fully connected networks, but parameters are reused
- loss $\ell\left(\left[\boldsymbol{h}_{\mathbf{1}}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{n}}\right], \boldsymbol{y}\right)$

[A. Karpathy]
- Can create deeper networks by using $\left[h_{1}, h_{2}, \ldots, h_{n} \in \mathbb{R}^{d^{\prime}}\right]$ as sequential input to next layer

NN Architectures LSTMs

- RNN produces a sequence of output vectors

$$
x_{1} \ldots x_{N} \quad \longrightarrow \quad h_{1} \ldots h_{N}
$$

- LSTM produces "memory cell vectors" along with output

$$
x_{1} \ldots x_{N} \quad \longrightarrow \quad c_{1} \ldots c_{N}, h_{1} \ldots h_{N}
$$

- These $c_{1} \ldots c_{N}$ enable the network to keep or drop information from previous states.

NN Architectures LSTMs

- Simple RNNs

- In LSTMs, each time frame associated with a complex cell

NN Architecture LSTMs

- Cell state c_{t}

- Forget gate q_{t}

- Input gate

See lecture slides for exact equations

- Cell state update

- Output gate

NN architectures - encoder-decoder

See lecture slides
for exact equations

- Encoder RNN: First encodes in the input and captures the context in ξ
- Decoder RNN: decodes the output from ξ
- Decoder with attention: instead of relying just on final context ξ, use a linear combination of all the hidden states in the encoder (not depicted in figure)

Ensembles

- Reduce bias:
- build ensemble of low-variance, high-bias predictors sequentially to reduce bias
- AdaBoost: binary classication, exponential surrogate loss
- Reduce variance:
- build ensemble of high-variance, low-bias predictors in parallel and use randomness and averaging to reduce variance
- random forests, bagging
- Problems
- Computationally expensive (train and test time)
- Often loose interpretability

Bagging: Bootstrap aggregation

Averaging independent models reduces variance without increasing bias.

- But we don't have independent datasets!
- Instead take repeated bootstrap samples from training set S
- Bootstrap sampling: Given dataset $S=\left\{\left(x^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}$, create S^{\prime} by drawing N examples at random with replacement from S
- Bagging:
- Create M bootstrap datasets $S_{1}, S_{2}, \ldots, S_{M}$
- Train distinct models $f_{m}: \mathcal{X} \rightarrow \mathcal{Y}$ by training only on S_{m}
- Output final predictor $F(x)=\frac{1}{M} \sum_{m=1}^{M} f_{m}(x)$ (for regression)
 or $F(x)=$ majority $\left(f_{m}(x)\right)$ (for classification)

Adaboost

Training data $S=\left\{\left(x^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}$

- Maintain weights $W_{i}^{(t)}$ for each example $\left(x^{(i)}, y^{(i)}\right)$, initially all $W_{i}^{(1)}=\frac{1}{N}$
- For $t=1,2, \ldots, T$
- Normalize weights $D_{i}^{(t)}=\frac{W_{i}^{(t)}}{\sum_{i} W_{i}^{(t)}}$
- Pick a classifier f_{t} has better than 0.5 weighted loss $\epsilon_{t}=\sum_{i=1}^{N} D_{i}^{(t)} l^{01}\left(f_{t}\left(x^{(i)}\right), y^{(i)}\right)$
- Set $\alpha_{t}=\frac{1}{2} \log \frac{1-\epsilon_{t}}{\epsilon_{t}}$
- Update weights

$$
W_{i}^{(t+1)}=W_{i}^{(t)} \exp \left(-\alpha_{t} y^{(i)} f_{t}\left(x^{(i)}\right)\right)
$$

Adaboost

$$
\text { Training data } S=\left\{\left(x^{(i)}, y^{(i)}\right): i=1,2, \ldots, N\right\}
$$

- Maintain weights $W_{i}^{(t)}$ for each example $\left(x^{(i)}, y^{(i)}\right)$, initially all $W_{i}^{(1)}=\frac{1}{N}$
- For $t=1,2, \ldots, T$
- Normalize weights $D_{i}^{(t)}=\frac{w_{i}^{(t)}}{\sum_{i} w_{i}^{(t)}}$
- Pick a classifier f_{t} has better than 0.5 weighted loss

$$
\epsilon_{t}=\sum_{i=1}^{N} D_{i}^{(t)} \ell^{01}\left(f_{t}\left(x^{(i)}\right), y^{(i)}\right)
$$

- Set $\alpha_{t}=\frac{1}{2} \log \frac{1-\epsilon_{t}}{\epsilon_{t}}$

- Update weights

$$
W_{i}^{(t+1)}=W_{i}^{(t)} \exp \left(-\alpha_{t} y^{(i)} f_{t}\left(x^{(i)}\right)\right)
$$

- Output strong classifier $F_{T}(x)=\operatorname{sign}\left(\sum_{t} \alpha_{t} f_{t}(x)\right)$

Supervised learning summary

- Linear regression
- Classification
- Logistic regression
- Maximum margin classifiers, kernel trick
- Generative models: Naïve Bayes, HMMs
- Neural networks
- Ensemble methods
- Main concepts:
- Detecting and avoiding overfitting and the tradeoff between bias and complexity
- Learning parameters using empirical risk minimization (ERM) plus regularization
- Optimization techniques: specially (stochastic) gradient descent \rightarrow for both convex and non-convex problems

Unsupervised learning

- Unsupervised learning: Requires data $x \in \mathcal{X}$, but no labels
- Goal?: Compact representation of the data by detecting patterns
- e.g. Group emails by topic
- Useful when we don't know what we are looking for
- makes evaluation tricky
- Applications in visualization, exploratory data analysis, semi-supervised learning

Linear dimensionality reduction

- Problem: Given high dimensional feature $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right] \in \mathbb{R}^{d}$ find transformations $z(\boldsymbol{x})=\left[z_{1}(\boldsymbol{x}), z_{2}(\boldsymbol{x}), \ldots, z_{k}(\boldsymbol{x})\right] \in \mathbb{R}^{k}$ so that "almost all useful information" about \boldsymbol{x} is retained in $z(\boldsymbol{x})$
- Learn $z(\boldsymbol{x})$ from dataset of examples $S=\left\{\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}: i=1,2, \ldots, N\right\}$
- Linear dimensionality reduction: $z(\boldsymbol{x})$ restricted to be a linear function
- PCA: given data $x \in \mathbb{R}^{d}$, find $\mathrm{U} \in \mathbb{R}^{k \times d}$ to minimize

$$
\min _{\mathrm{U}} \sum_{i}\left\|\boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{x}^{(i)}-\boldsymbol{x}^{(i)}\right\|_{2}^{2} \text { s.t. } \boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}
$$

- solution given by eigenvalue decomposition of $\widehat{\Sigma}_{x x}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)^{\top}}$
- finds directions of maximum variation in data
- check: make sure to center the data so that each feature has zero mean
- Can get non-linear embedding by doing PCA on $\phi(\boldsymbol{x}) \rightarrow$ Kernel PCA

Non linear dimensionality reduction

- Isomap: Neighborhood of points represented using the kNN-graph with weights proportional to distance between the points
- geodesic distance $d\left(x, x^{\prime}\right)=$ length of shortest path in the graph
- Use any shortest path algorithm can be used to construct a matrix $M \in$ $\mathbb{R}^{N \times N}$ with $M_{i j}=d\left(x^{(i)}, x^{(j)}\right)$ for all $x^{(i)}, x^{(j)} \in S$
- MDS: Find a (low dimensional) embedding $z(x)$ of x so that geodesic distance match the Euclidean distance in the transformed space

$$
\min _{\mathrm{Z}} \sum_{i, j \in[N]}\left(\left\|z\left(x^{(i)}\right)-z\left(x^{(j)}\right)\right\|-M_{i j}\right)^{2}
$$

- Works well for small scale problems

Non linear dimensionality reduction

- Autoencoders:

- $\phi(x)=f_{W_{1}}(x)$
- $\tilde{\boldsymbol{x}}=f_{W_{2}}(\phi(\boldsymbol{x}))$
- some loss $\ell(\tilde{x}, x)$

$$
\widehat{W}_{1}, \widehat{W}_{2}=\min _{W_{1}, W_{2}} \sum_{i=1}^{N} \ell\left(f_{W_{2}}\left(f_{W_{1}}\left(x^{(i)}\right)\right), \boldsymbol{x}^{(i)}\right)
$$

- learn using SGD with backpropagation

MLE of latent variable models

- Generative model:
- Observed variables $x \in \mathcal{X}$
- Latent variables $z \in Z$
- Probabilistic generative model parameterized by parameters Φ is

$$
P_{\Phi}(x, z)=P_{\Phi}(z) P_{\Phi}(x \mid z)
$$

- For each example x, first sample $z \sim P_{\Phi}(z)$, then sample $\mathrm{x} \sim$ $P_{\Phi}(x \mid z)$
- Note: we never see z, appears only in generative assumption
- Latent variables allows for easier specification of $\operatorname{Pr}(x)$
- MLE estimation: given dataset $S=\left\{x^{(i)}: i=1,2, \ldots, N\right\}$

$$
\begin{gathered}
\Phi^{*}=\underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N} \log \operatorname{Pr}\left(x^{(i)}\right) \\
\Phi^{*}=\underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N}\left(\log \sum_{z \in \mathcal{Z}} P_{\Phi}\left(x^{(i)}, z\right)\right)
\end{gathered}
$$

Expectation Maximization high-level algo

$$
\Phi^{*}=\underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N}\left(\log \sum_{Z^{(i)} \in Z} P_{\Phi}\left(x^{(i)}, Z^{(i)}\right)\right)
$$

- Main idea: Say we are looking at problems where the above optimization is "easy" if we "know" $z^{(i)}$! but we don't know $z^{(i)}$.
- Fix-alternate between estimating $z^{(i)}$ and Φ
- Start with some estimate $\Phi^{(0)}$ of parameters we want to estimate:
- Expectation step (E-step): Compute an expectation to "fill in" missing variables $z^{(i)}$ assuming our current estimate of parameter $\Phi^{(t)}$ is correct.
- Maximization step (M-step): Assuming our estimates $Z^{(i)}$ from above Estep is correct, solve maximization to estimate $\Phi^{(t+1)}$
- Recall that if we pretend to know $z^{(i)}$, the optimization is "easy"
- No magic! still optimizing hard non-convex function with lots of local optima
- not guaranteed to converge to global optima and
- but often also give good enough solutions even if they are local optima

EM algorithm

$$
\Phi^{*}=\underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N}\left(\log \sum_{Z^{(i)} \in Z} P_{\Phi}\left(x^{(i)}, z^{(i)}\right)\right)
$$

- Expectation step (E-step): "fill in" missing variables $Z^{(i)}$ assuming our current estimate of $\Phi^{(t)}$ is correct.
- How to do this?
- Specify an auxiliary model $P_{\Psi}(z \mid x)$
- Instead of filling in one value of z this gives a distribution over $z \mid x$
- Idea: find a way to estimate Ψ under this model! If the model is correct, we in turn get a good estimate of z

$$
E L B O_{x}(\Phi, \Psi)=\mathbb{E}_{\mathbf{z} \sim P_{\Psi}(\cdot \mid x)} \log P_{\Phi}(x \mid z)+D_{K L}\left(P_{\Psi}(z \mid x)| | P_{\Phi}(z)\right)
$$

- For any $\Psi, E L B O_{x}(\Phi, \Psi) \leq \log \left(\sum_{z \in Z} P_{\Phi}(x, z)\right)$ and maximized when $P_{\Psi}(z \mid x)=P_{\Phi}(z)=\sum_{x \in X} P_{\Phi}(z, x)$

EM algorithm

$$
\Phi^{*}=\underset{\Phi}{\operatorname{argmax}} \sum_{i=1}^{N}\left(\log \sum_{z^{(i)} \in \mathcal{Z}} P_{\Phi}\left(x^{(i)}, z^{(i)}\right)\right)
$$

- Specify joint models $P_{\Phi}(z, x)$ and auxiliary model $P_{\Psi}(z \mid x)$
- Initialize $\Phi^{(0)}, \Psi^{(0)}$
- For $t=1,2, \ldots$,
- $\Psi^{(t)}=\max _{\Psi} \operatorname{ELBO}\left(\Phi^{(t-1)}, \Psi\right)$
- $\Phi^{(t)}=\max _{\Phi} E L B O\left(\Phi, \Psi^{(t)}\right)$

Unsupervised learning - clustering

- k-means clustering
- hard clustering
- Initialize cluster centroid
- Alternatingly
- Compute cluster memberships (hard membershipts)
- Update cluster centroids
- Gaussian mixture models
- soft clustering: cluster membership is a probability vector $\pi \in$ Δ^{k-1} over k mixture components and mixture components are Gaussians with means $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$
- EM algorithm alternatingly:
- Computes soft cluster memberships $\pi^{(\mathrm{t})}$
- Updates mixture component means $\mu_{1}^{(t)}, \mu_{2}^{(t)}, \ldots, \mu_{k}^{(t)}$
- Main modeling in specifying distance or learning representation

Topics not covered

Semi-Supervised Learning Using unlabeled data to help predictions

Active Learning

- Training data is randomly drawn/fixed
- What if we could explicitly ask for specific training data?
- E.g. we could query an expert (a teacher, a user, someone on mechanical turk) about a specific point
- Setting
- We have a large collection of unlabeled points
- Can query labels for specific unlabeled examples
- Each query has a cost associated, so we want to minimize the number of queries
- Goal is to still learn a mapping from input to some label/output
- How to design the querying system so that we learn good models with smallest amount of data?

Limited/partial Feedback

- Instead of getting correct label, we only know if the prediction was correct or not
- Only know loss/payoff of label/action chosen, not of others
- "Bandit" problems: ad placement, recommendation systems, ...

- New challenge: Exploration vs Exploitation

Reinforcement Learning

- Control agent (robot) in environment, only see reward when you get it
- Long term planning to finish a task
- At time t you are in some (unknown to you) state s_{t}
- You choose an action a_{t}, based on which you move to a new state $s_{t+1}=$ $f\left(s_{t}, a_{t}\right)$ (maybe with some randomness) and receive reward $r\left(s_{t+1}\right)$.
- You don't know $f(\cdot, \cdot)$ and $r(\cdot)$ (need to learn them)
- You only know the rewards $r\left(s_{t}\right)$ you get, and possibly other limited feedback about the state $o\left(s_{t}\right)$
- Goal: maximize rewards
- E.g.: mouse moving in a maze
- State = location and direction
- Action = move forward, turn left or turn riginternal state
- Reward = cheese
- Observation(State) = (front wall, left wall, right wall, back wall)

Probabilistic Models

- Probabilistic models define models for $\operatorname{Pr}(x, y)$ or $\operatorname{Pr}(x \mid y)$ or $\operatorname{Pr}(y \mid x)$
- We saw some simple examples of this flavor
- More complex models often use many latent variables
- typically represented as using graphical models such as Bayesian Networks and Markov Random Fields
- Techniques for
- Modeling : how to represent $\operatorname{Pr}(x, y)$ or $\operatorname{Pr}(x \mid y)$ or $\operatorname{Pr}(y \mid x)$
- Inference : inferring the values of latent variables
- Learning : prediction
- Many times the optimization problems are non-convex and sometimes even non-computable
- approximate inference algorithms are very common

Machine Learning Landscape

Convex (= Linear)

- Linear/logistic reg.
- SVMs
- Boosting
- Many other models

Main optimization tools:
LP/SDP solvers and SGD

Combinatorial Classes

- Formulas (DNFs)
- Decision trees

Main optimization tools: greedy, combinatorial search (using pruning, genetic programming, simulated annealing, etc)

Non-Parametric

- Nearest-Neighbor
- Parzan Window
- Random walk on example graph

Non-Convex

- Neural Networks
- Dictionary and representation learning

Main optimization tools: SGD with tricks

Probabilistic Models

- Fit data to generative model
- Bayes nets, graphical models
- Latent variable models

Typically non-convex, same issues as non-convex models

Expert designed \rightarrow data driven

Just dump all data into the machine

