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EM Template

Input: model Py(x, -), unlabeled data U = {m(i)}?zl, T
Output: local maximizer of Ly (®) := Y"1, log Pp(x?)
1. Initialize parameters ®(©)
2. Fort=0...T —1,

U+ argmax ZZPCW)( |2 x log Py (2, )
® i=1 =1

3. Return &),
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EM Template

Input: model Py(x, -), unlabeled data U = {w(i)}?zl, T
Output: local maximizer of Ly (®) := Y"1, log Pp(x?)
1. Initialize parameters ®(©)
2. Fort=0...T —1,

U+ argmax ZZPCW)( |2 x log Py (2, )
® i=1 =1

3. Return &),

See yesterday's lecture for how this is derived by alternating
maximization of the ELBO(®, V) < Ly (®) where U defines an
auxiliary posterior Py (y|x).
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Overview

EM for Naive Bayes

Maximum Likelihood Estimation with Labeled Data
Maximum Likelihood Estimation with Unlabeled Data

EM for Gaussian Mixture Models
Maximum Likelihood Estimation with Labeled Data
Maximum Likelihood Estimation with Unlabeled Data

k-Means Clustering
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Naive Bayes: Definition

A naive Bayes (NB) model with m labels and d binary-valued
feature types has m + 2dm parameters, denoted by :
» ¢(z) > 0 for each z € {1...m} such that

D alz) =1

z

» ¢(0]z,7) > 0 and ¢(1|z,j) > 0 such that
q(0[z,5) + q(1]z,7) =1
foreach j e {l1...d} and z € {1...m}
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Naive Bayes: Definition

A naive Bayes (NB) model with m labels and d binary-valued
feature types has m + 2dm parameters, denoted by :
» ¢(z) > 0 for each z € {1...m} such that

D alz) =1

z

q(0|z,7) > 0 and ¢(1|z,j) > 0 such that
q(0[z,5) + q(1]z,7) =1
foreach j e {l1...d} and z € {1...m}

® defines a joint distribution over = (21 ...24) € {0,1}% and
ze{l...m} by

Po(x, z) := q(7jlz 7)

n :::ng
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Log Likelihood of Labeled Data

If S = {(m(i),z(i))}?zl is a set of n iid labeled samples, the log
likelihood of S under ® is

Lg(®) = Z log Py (2, (V)
i=1
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Log Likelihood of Labeled Data

If S = {(m(i),z(i))}?zl is a set of n iid labeled samples, the log
likelihood of S under ® is

Lg(®) = Z log Py (2, (V)
i=1

= > logq(=") + 3 logg(al"]z, j)
=1

j=1
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Log Likelihood of Labeled Data

If S = {(m(i),z(i))}?zl is a set of n iid labeled samples, the log
likelihood of .S under ® is

=1 7j=1
m m m
= Zcount(z) logq(z) + Z Z Z count(z, j, z)log q(z|z, )
z=1 z=1j=12z€{0,1}
where
n n
count(z) := Z 1 count(z,j, ) := Z 1
i=1: =1:
2= z =
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MLE with Labeled Data

What are the parameter values ¢(z) and ¢(x|z, j) that maximize
m m m
Zcount(z) logq(z) + Z Z Z count(z, j, x) log q(x|z, 7)
z=1 j

under the constraints that they are nonnegative, > ¢(z) =1, and
2o x|z, 5) =17
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MLE with Labeled Data

What are the parameter values ¢(z) and ¢(x|z, j) that maximize
m m m
Z count(z)logq(z) + Z Z Z count(z, j, x) log q(x|z, 7)
z=1 j

under the constraints that they are nonnegative, > ¢(z) =1, and
2o x|z, 5) =17

Answer: See the lemma in yesterday's lecture for why.

count(z)
q(z) = —
count(z, j, x)

count(z,7,0) + count(z, j, 1)

q(zl|z,7) =
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Log Likelihood of Unlabeled Data

likelihood of U under @ is

IfU = {:c(i)}?_l is a set of n iid unlabeled samples, the log

Ly (@) =) log Py ()
=1
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Log Likelihood of Unlabeled Data

likelihood of U under @ is

IfU = {:c(i)}?_l is a set of n iid unlabeled samples, the log

Ly(®) = Zlog Py (a)
i=1

= ilog (i P@(w(i)7 ))
i=1 =1
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Log Likelihood of Unlabeled Data

IfU = {:c(i)}?_l is a set of n iid unlabeled samples, the log

likelihood of U under @ is

Ly(®) = zn:log P@(m(l))
S (S )
i=1 =1
= Zlog (Zlogq( )+ ZlogQ(wﬁ-i)l ,j))

Unfortunately, finding valid parameter values ¢(z) and ¢(z|z, j)
that maximize this log likelihood is not as trivial
(e.g., there is no closed-form solution).
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Explanation of EM for This Problem

» EM is a local search algorithm to iteratively optimize

Ly(®) =) log (Z Py (x, ))
=1 =1

That is, it calculates ®(1) ... &) such that

Ly(@W) < Ly(@®) < -+ < Ly (@7 < Ly (@)
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Explanation of EM for This Problem

» EM is a local search algorithm to iteratively optimize

Ly(®) =) log (Z Py (x, ))
=1 =1

That is, it calculates ®(1) ... &) such that

Ly(@W) < Ly(@®) < -+ < Ly (@7 < Ly (@)

» Importantly, each EM update /s trivial: it has a closed-form
solution.
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Explanation of EM for This Problem

» EM is a local search algorithm to iteratively optimize

Ly(®) =) log (Z Py (x, ))
=1 =1

That is, it calculates ®(1) ... &) such that

Ly(@W) < Ly(@®) < -+ < Ly (@7 < Ly (@)

» Importantly, each EM update /s trivial: it has a closed-form
solution.

» As usual with local search algorithms, it only finds a local
optimum and is not guaranteed to find a global optimum.
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Posterior Probabilities

At each iteration ¢, we use the current parameter estimates
2@ = {4(2), ¢ (alzj) }

to calculate the posterior probabilities on individual samples (.
This can be easily precomputed by Bayes rule: for every
i€{l...n}and z € {1...m}, calculate

Pq)(t)(a:(i)’z) _ ¢ (2) H] 1q ‘Z 7)
Py (2) z;’;lqwz)nﬂq ( @)z, 5)

Pq><t)(z|m(i)) =
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Expected Log Likelihood of Labeled Data Under (")

i i Py (2|2 x log Py (™, 2)

i=1 z=1
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Expected Log Likelihood of Labeled Data Under (")

NE

©
Il
=
n
Il

Py (z\:c(i)) x log Py (w(i), 2)
1

> Py (2] <logq +Zlogq ZJ)

12=1

I
M:

7
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Expected Log Likelihood of Labeled Data Under (")

log g(z z,j))
1

n
Zqu) (2] logq(xﬁ”lz,j)

=1

M:
NE

Py (z\m(i)) x log Py (m(i), 2)

©
Il
=
n
Il

I

(- 4
NE
NE

1

@
Il
—
N
Il

Py (z]2) x (1og q(z) +

-
M-
NE
INgER

P¢<n>(2|$( )logq(z) +

n
Il
s
-
Il
=

Il
=

z=1j
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Expected Log Likelihood of Labeled Data Under (")

ZP (t) ><10qu>(£11(1) )

=1

\E

1

i
n

Py (z]2™) <1og 4(2)+ ) log q(%(-i)m))

j=1

@
Il
-

n

Zqu) (2] logq(arﬁ“lz,j)

I
\E
M: I MS

Py ( |$( )logq(z) +

tuqs
(M-
Ms

z=1 j=11:=1
Z count;(2)logq(z) + Y Y > county(z,j,7)log q(z|z, j)
z=1 z=1j=12z€{0,1}
where
n .
count,(z ZP@H (z|2) count(z,j, x) := Z P@(t)(z‘m(l))

i=1: a:(z)
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MLE in the ¢-th lteration of EM

What are the parameter values ¢(z) and ¢(x|z, j) that maximize

Zcountt )logq(z —i-zm:i Z COI.lntth, x)logq(x|z,7)

z2=1 j=12€{0,1}

under the constraints that they are nonnegative, > ¢(z) =1, and

> 4]z, 5) =17
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MLE in the ¢-th lteration of EM

What are the parameter values ¢(z) and ¢(x|z, j) that maximize

Zcountt )logq(z —i-zm:i Z COI.lntth, x)logq(x|z,7)

z2=1 j=12€{0,1}

under the constraints that they are nonnegative, > ¢(z) =1, and

> 4]z, 5) =17

Answer:
count,(z) _ count,(z, j, )
q(z) = ———— q(x|z,j) = —
n > zefo,1} county(z, j, )
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EM for NB

1. Initialize NB parameters &)
2. Fort=0...T—1,

2.1 Fori=1...nand z = 1...m, calculate current posterior

d I

0 () =1 40 2,9)

m d % .
POUITIOIEHN ) OICIRIEN)
2.2 “Count” county(z) « S Pew (2]2?) and

count,(z, j, ) S o, Paw (z[2™) and set
Ut = {1 (2), ¢ (]2, 5)} by

Py (z\m(i)) —

D () count;(z) D (22, ) count;(z, j, x)

— 2 .
n Zmem count(z, j,x)

3. Return &),
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Gaussian Mixture Model: Definition

A Gaussian mixture model (GMM) with m clusters with identity
covariance matrix in R? has m + dm parameters, denoted by ®:

» 7m(z) >0 for each z € {1...m} such that
Zﬂ'(z) =1

> 1, € R for each 2z € {1...m}.
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Gaussian Mixture Model: Definition

A Gaussian mixture model (GMM) with m clusters with identity
covariance matrix in R? has m + dm parameters, denoted by ®:

» 7m(z) >0 for each z € {1...m} such that
Z?T(Z) =1
> 1, € R for each 2z € {1...m}.

® defines a joint distribution over z € R% and z € {1...m} by

1 1

Py(x,z) =m(2) X exp | —= a:—z2

A\ 7
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Log Likelihood of Labeled Data and MLE
If S = {(z,2)}"_ s a set of n iid labeled samples, the log
likelihood of S under ® is

Lg(®) = Z log Py (2@, y®)

i=1
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Log Likelihood of Labeled Data and MLE
If S = {(z,2)}"_ s a set of n iid labeled samples, the log
likelihood of S under ® is

Lg(®) = Z log Py (2@, y®)

i=1

n
. 1 _ 2
= Zlogﬂ'(z(’)) ~5 Hm(z) — oo —logVv2m
i=1

2
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Log Likelihood of Labeled Data and MLE
If S = {(z,2)}"_ s a set of n iid labeled samples, the log
likelihood of S under ® is

=1
; 1 : 2
= Zlogﬂ-(z('L>) 3 Hm(l) — || —log V2r
2
i=1
3 1 LN [0 AW
= t _ = i) ;
;coun (2)logm(z) | + 5 ; Hm /Lz<>H2 n
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Log Likelihood of Labeled Data and MLE
If S = {(z,2)}"_ s a set of n iid labeled samples, the log
likelihood of S under ® is

i=1
n
. 1 _ 2
= Zlogﬂ'(z(”) - = Hm(z) — oo —logVv2m
p 2 2
_ t - i) ; Y
;coun (z)logm(z) | + > ; Ha: /LZ()H2 +

Parameter values pi(z) (with probability constraints) and . (with
no constrainst) that maximize Lg(®) are thus

n(z) = count(z) e = 1 Z £

n ° count(z)
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Log Likelihood of Unlabeled Data

If U = {z@}"_ is a set of n iid unlabeled samples, the log
likelihood of U under ® is

Ly (®) = log Py(x")
i=1
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Log Likelihood of Unlabeled Data

If U = {z@}"_ is a set of n iid unlabeled samples, the log
likelihood of U under ® is

Ly (®) = log Py(x")
i=1

= Zn:log <§: P(p(:c(i), ))
i=1 =1
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Log Likelihood of Unlabeled Data

If U = {z@}"_ is a set of n iid unlabeled samples, the log
likelihood of U under ® is
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Log Likelihood of Unlabeled Data

If U = {z@}"_ is a set of n iid unlabeled samples, the log
likelihood of U under ® is

Ly (®) = log Py(x")
i=1
— Zlog (Z P(p(:c(i), ))
i=1 =1
n m 1 1 . 2
= ;log (ZTC( ) X Eexp (—2 ‘w(z) —u H2>>

=1

Again, finding valid parameter values 7(z) and p, that maximize
this log likelihood is not as trivial (there is no
closed-form solution).
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Log Likelihood of Unlabeled Data

If U = {z@}"_ is a set of n iid unlabeled samples, the log
likelihood of U under ® is

Ly(®) =) log Py(a”)
i=1
= Zlog (Z Py (x™, ))
i=1 -
S (S0 e (400 )

Again, finding valid parameter values 7(z) and p, that maximize
this log likelihood is not as trivial (there is no
closed-form solution).

EM is useful here again because each iteration does have a trivial
solution.
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Posterior Probabilities

At each iteration ¢, we use the current parameter estimates
20 = {0, 1)

to calculate the posterior probabilities on individual samples ().
This can again be easily precomputed by Bayes rule: for every
ie{l...n}and z € {1...m}, calculate

pmwwgz%mw%d: 70 (z) x N (x|, 1)
P Pq;(t)(a:(i)) 22;1 7T(t)(z) « N(-’B’Mgt),fd)
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Expected Log Likelihood of Labeled Data Under (")

ZZP@@) (Z|w(1)) X log P(I)(w(i), Z)

i=1 z=1
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Expected Log Likelihood of Labeled Data Under (")

n m

Z Z Py (Z|;L-(i)) x log Pg (w(i)’ Z)
i=1 z=1

=1 z=1

; 2
:B(Z)_/’LZHQ_IOg\/%)
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Expected Log Likelihood of Labeled Data Under (")

Z Z Py (Z|;L'(i)) x log Pg (:L'(i), Z)

35 ) (o) o 105v)
1=1 z=1
m n n m i
Tt ) e
;; a0 (el log (2 ;Z:: o) (2] |
count (z)
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Expected Log Likelihood of Labeled Data Under (")

ZZP@@) (Z|w(1)) X log P(I)((B(i)’ Z)

=1 z=1

m 1 ‘ )
Z 0) Z|:13 <log7r(z)2Hw(1) — s L

n

n m
Z s (212 ™) log 7(2) — ZZRpu)(z\m(i)) Hm(i) —

g
3

i=1 i=1 z=1
count, (z)
MLE in the ¢-th iteration of EM
szzaam@) Mﬁ:ZEQEQVW@W@
n count;(z)
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EM for GMMs

1. Initialize GMM parameters ®(©).
2. Fort=0...T -1,

2.1 Fori=1...nand y =1...m, calculate current posterior

7T(t>(z) X N(mmg),ld)
S w0 (2) x N (|l 1)

Pq,(f,) (Z|:13(i)) =

2.2 Set ®(+1) = {W<t+1>(z)’ u?*”} by

m(z) = @ [y = Sor i Py (2|l2®)z®
" ’ Count, (2)
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Non-Probabilistic Clustering

» You can train a GMM & with k clusters with EM and obtain a
“soft” k-clustering given by the posterior

m(z) X N(z|p=, 1a)

Pa(zlz®) =
‘1>( ‘ ) Zl;:l 71-(2) XN(m’.LLZaId)

» If all you want is to cluster n points (D ... 2(" € R? into k
clusters, you can do k-means clustering.
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k-Means Clustering

Input: points U = {m(i)}?zl in R?, number of clusters k, T
Output: cluster assignments a;...a, € {1...k}

1. Initialize centroids: 1/50) o V,(CO) € R4

2. Fort=0...T -1,

2.1 Assign each point to its closest centroid:

k ,
< argmin ‘ ‘az(” — u§t)
j=1

al! 2

2

2.2 Update centroids: denoting CJ(»t) = {a:(i) : az(-t) = j},

(t+1) 1
v e‘ o Yooz

(T)

3. Return q;

2
. ; T
< arg mmg’?:1 H:c(’) - u§ )H
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Loss of k-Means Clustering
Using indicator [[A]] which is 1 if A is true and 0 otherwise,

L(vy...vk,a1...ay) ::ZZ[[% = 4] Hx(i) _VjH
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Loss of k-Means Clustering
Using indicator [[A]] which is 1 if A is true and 0 otherwise,

2

Lvy...vk,a1...a ZZ H Z)_VJHQ

=1 j=1
k-means is an alternating minimization algorithm for this loss.
1. Fix centroids vy ... vy, optimize over assignments a1 ... ay,:
2

3
a; <—argm1nHm( —I/JH

j=1 2
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Loss of k-Means Clustering
Using indicator [[A]] which is 1 if A is true and 0 otherwise,

2

L(vy...vk,a1...ay) ::ii[[ai = 7] Ha;(i) _l/jH2

i=1 j=1
k-means is an alternating minimization algorithm for this loss.
1. Fix centroids vy ... vy, optimize over assignments a1 ... ay,:
2

3
a; <—argm1nHm( —I/JH

j=1 2

2. Fix assignments a; ... a,, optimize over centroids vy ...vy:
weRd i=1:

1
v < arg min H @ _ 'wH o Z:c
| ']|:D€Cj

Thus k-means can only decrease the loss in each step.
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Generalization of k-Means

Choose a “distortion” function D(x,y) > 0 and do alternating
minimization of

Lvy...vk,a1...a,) = i i [[a; = j]] D (m(i)7 Vj)

i=1 j=1
1. Fix centroids v ... vy, optimize over assignments a;j ... ay,:

k .
a; < argmin D (a:(z),l/j>
j=1
2. Fix assignments a; ... a,, optimize over centroids vy ...vy:
n
v < arg min Z D (cc(l),w)

weR? 1. q,=j
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Choice of Distortion Function

» The standard k-means clustering uses squared Euclidean
distance D(z,y) = || — y||5 and
n

arg min Z D(a:(i),w>

weRT 1. q,=j

is given by the mean of Cj.

» [t turns out that for a wide class of distortion functions called
the Bregman divergence, this optimization is always given
by the mean of Cj.

» Examples of Bregman divergence: squared Euclidiean norm,
KL divergence (this only makes sense if data points are
probability distributions).

» So we can swap in any Bregman divergence and perform

exactly the same updates.
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k-Medians Clustering

> Use the Manhattan distance in the algorithm:

d
D(x,y) = |lz —yll; =) _ o — uil
I=1

» The solution of

arg min z”: H.’B(i) - le

d . .
weR® ;1. a;=j

is given by the element-wise median of Cj.
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